770 research outputs found

    Can the collective intentions of individual professionals within healthcare teams predict the team's performance : developing methods and theory

    Get PDF
    Background: Within implementation research, using theory-based approaches to understanding the behaviours of healthcare professionals and the quality of care that they reflect and designing interventions to change them is being promoted. However, such approaches lead to a new range of methodological and theoretical challenges pre-eminent among which are how to appropriately relate predictors of individual's behaviour to measures of the behaviour of healthcare professionals .The aim of this study was to explore the relationship between the theory of planned behaviour proximal predictors of behaviour (intention and perceived behavioural control, or PBC) and practice level behaviour. This was done in the context of two clinical behaviours – statin prescription and foot examination – in the management of patients with diabetes mellitus in primary care. Scores for the predictor variables were aggregated over healthcare professionals using four methods: simple mean of all primary care team members' intention scores; highest intention score combined with PBC of the highest intender in the team; highest intention score combined with the highest PBC score in the team; the scores (on both constructs) of the team member identified as having primary responsibility for the clinical behaviour. Methods: Scores on theory-based cognitive variables were collected by postal questionnaire survey from a sample of primary care doctors and nurses from northeast England and the Netherlands. Data on two clinical behaviours were patient reported, and collected by postal questionnaire survey. Planned analyses explored the predictive value of various aggregations of intention and PBC in explaining variance in the behavioural data. Results: Across the two countries and two behaviours, responses were received from 37 to 78% of healthcare professionals in 57 to 93% practices; 51% (UK) and 69% (Netherlands) of patients surveyed responded. None of the aggregations of cognitions predicted statin prescription. The highest intention in the team (irrespective of PBC) was a significant predictor of foot examination Conclusion: These approaches to aggregating individually-administered measures may be a methodological advance of theoretical importance. Using simple means of individual-level measures to explain team-level behaviours is neither theoretically plausible nor empirically supported; the highest intention was both predictive and plausible. In studies aiming to understand the behaviours of teams of healthcare professionals in managing chronic diseases, some sort of aggregation of measures from individuals is necessary. This is not simply a methodological point, but a necessary step in advancing the theoretical and practical understanding of the processes that lead to implementation of clinical behaviours within healthcare teams

    Stellar Disk Truncations: Where do we stand ?

    Full text link
    In the light of several recent developments we revisit the phenomenon of galactic stellar disk truncations. Even 25 years since the first paper on outer breaks in the radial light profiles of spiral galaxies, their origin is still unclear. The two most promising explanations are that these 'outer edges' either trace the maximum angular momentum during the galaxy formation epoch, or are associated with global star formation thresholds. Depending on their true physical nature, these outer edges may represent an improved size characteristic (e.g., as compared to D_25) and might contain fossil evidence imprinted by the galaxy formation and evolutionary history. We will address several observational aspects of disk truncations: their existence, not only in normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed shape, not sharp cut-offs as thought before, but in fact demarcating the start of a region with a steeper exponential distribution of starlight; their possible association with bars; as well as problems related to the line-of-sight integration for edge-on galaxies (the main targets for truncation searches so far). Taken together, these observations currently favour the star-formation threshold model, but more work is necessary to implement the truncations as adequate parameters characterising galactic disks.Comment: LaTeX, 10 pages, 6 figures, presented at the "Penetrating Bars through Masks of Cosmic Dust" conference in South Africa, proceedings published by Kluwer, and edited by Block, D.L., Freeman, K.C., Puerari, I., & Groess, R; v3 to match published versio

    Immediate response of myocardium to pressure overload includes transient regulation of genes associated with mitochondrial bioenergetics and calcium availability

    Get PDF
    Ventricular hypertrophy is one of the major myocardial responses to pressure overload (PO). Most studies on early myocardial response focus on the days or even weeks after induction of hypertrophic stimuli. Since mechanotransduction pathways are immediately activated in hearts undergoing increased work load, it is reasonable to infer that the myocardial gene program may be regulated in the first few hours. In the present study, we monitored the expression of some genes previously described in the context of myocardial hypertrophic growth by using the Northern blot technique, to estimate the mRNA content of selected genes in rat myocardium for the periods 1, 3, 6, 12 and 48 h after PO stimuli. Results revealed an immediate switch in the expression of genes encoding alpha and beta isoforms of myosin heavy chain, and up-regulation of the cardiac isoform of alpha actin. We also detected transitory gene regulation as the increase in mitochondrial cytochrome c oxidase 1 gene expression, parallel to down-regulation of genes encoding sarco(endo)plasmic reticulum Ca+2 ATPase and sodium-calcium exchanger. Taken together, these results indicate that initial myocardial responses to increased work load include alterations in the contractile properties of sarcomeres and transitory adjustment of mitochondrial bioenergetics and calcium availability

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    © 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    Childhood indicators of susceptibility to subsequent cervical cancer

    Get PDF
    Common warts could indicate cervical cancer susceptibility, as both are caused by human papillomavirus (HPV). Eczema was also investigated, as atopic eczema has been negatively associated with warts, but non-atopic eczema may be associated with compromised host defences, as observed in patients with HIV, suggesting increased susceptibility to HPV infection and cervical cancer. ‘Cervical cancer’ was self-reported during an interview by 87 of 7594 women members of two longitudinal British birth cohorts. The accuracy of the diagnoses is limited by lack of confirmation using medical records. Odds ratios are adjusted for common warts and eczema in childhood; and cigarette smoking, number of cohabiting partners and social class in early adult life. The odds ratios of warts and eczema with cervical cancer are 2.50 (95% confidence interval 1.14–5.47) and 3.27 (1.95–5.49), respectively. The association of eczema with cervical cancer is independent of hay fever as a marker of atopy, suggesting the importance of non-atopic eczema. Both heavier smoking compared with non-smoking and four or more cohabiting partners compared with one/none have odds ratios for cervical cancer of 8.26 (4.25–15.10) and 4.89 (1.39–17.18), respectively. Common warts in childhood may indicate cervical cancer susceptibility; this and the relationship with eczema deserves investigation

    Formation of Supermassive Black Holes

    Full text link
    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final publication is available at http://www.springerlink.co

    A randomized trial of multivitamin supplementation in children with tuberculosis in Tanzania

    Get PDF
    Children with tuberculosis often have underlying nutritional deficiencies. Multivitamin supplementation has been proposed as a means to enhance the health of these children; however, the efficacy of such an intervention has not been examined adequately. 255 children, aged six weeks to five years, with tuberculosis were randomized to receive either a daily multivitamin supplement or a placebo in the first eight weeks of anti-tuberculous therapy in Tanzania. This was only 64% of the proposed sample size as the trial had to be terminated prematurely due to funding constraints. They were followed up for the duration of supplementation through clinic and home visits to assess anthropometric indices and laboratory parameters, including hemoglobin and albumin. There was no significant effect of multivitamin supplementation on the primary endpoint of the trial: weight gain after eight weeks. However, significant differences in weight gain were observed among children aged six weeks to six months in subgroup analyses (n=22; 1.08 kg, compared to 0.46 kg in the placebo group; 95% CI=0.12, 1.10; p=0.01). Supplementation resulted in significant improvement in hemoglobin levels at the end of follow-up in children of all age groups; the median increase in children receiving multivitamins was 1.0 g/dL, compared to 0.4 g/dL in children receiving placebo (p<0.01). HIV-infected children between six months and three years of age had a significantly higher gain in height if they received multivitamins (n=48; 2 cm, compared to 1 cm in the placebo group; 95% CI=0.20, 1.70; p=0.01; p for interaction by age group=0.01). Multivitamin supplementation for a short duration of eight weeks improved the hematological profile of children with tuberculosis, though it didn't have any effect on weight gain, the primary outcome of the trial. Larger studies with a longer period of supplementation are needed to confirm these findings and assess the effect of multivitamins on clinical outcomes including treatment success and growth failure. CLINICALTRIALS.GOV IDENTIFIER: NCT00145184

    Needle Electrode-Based Electromechanical Reshaping of Cartilage

    Get PDF
    Electromechanical reshaping (EMR) of cartilage provides an alternative to the classic surgical techniques of modifying the shape of facial cartilages. The original embodiment of EMR required surface electrodes to be in direct contact with the entire cartilage region being reshaped. This study evaluates the feasibility of using needle electrode systems for EMR of facial cartilage and evaluates the relationships between electrode configuration, voltage, and application time in effecting shape change. Flat rabbit nasal septal cartilage specimens were deformed by a jig into a 90° bend, while a constant electric voltage was applied to needle electrodes that were inserted into the cartilage. The electrode configuration, voltage (0–7.5 V), and application time (1–9 min) were varied systematically to create the most effective shape change. Electric current and temperature were measured during voltage application, and the resulting specimen shape was assessed in terms of retained bend angle. In order to demonstrate the clinical feasibility of EMR, the most effective and practical settings from the septal cartilage experimentation were used to reshape intact rabbit and pig ears ex vivo. Cell viability of the cartilage after EMR was determined using confocal microscopy in conjunction with a live/dead assay. Overall, cartilage reshaping increased with increased voltage and increased application time. For all electrode configurations and application times tested, heat generation was negligible (<1 °C) up to 6 V. At 6 V, with the most effective electrode configuration, the bend angle began to significantly increase after 2 min of application time and began to plateau above 5 min. As a function of voltage at 2 min of application time, significant reshaping occurred at and above 5 V, with no significant increase in the bend angle between 6 and 7.5 V. In conclusion, electromechanical reshaping of cartilage grafts and intact ears can be effectively performed with negligible temperature elevation and spatially limited cell injury using needle electrodes

    A Rapid Flp-In System for Expression of Secreted H5N1 Influenza Hemagglutinin Vaccine Immunogen in Mammalian Cells

    Get PDF
    Continuing transmissions of highly pathogenic H5N1 viruses in poultry and humans underscores the need for a rapid response to potential pandemic in the form of vaccine. Recombinant technologies for production of immunogenic hemagglutinin (HA) could provide an advantage over the traditional inactivated vaccine manufacturing process. Generation of stably transfected mammalian cells secreting properly folded HA proteins is important for scalable controlled manufacturing.We have developed a Flp-In based 293 stable cell lines through targeted site-specific recombination for expression of secreted hemagglutinin (HA) proteins and evaluated their immunogenicity. H5N1 globular domain HA1(1-330) and HA0(1-500) proteins were purified from the supernatants of 293 Flp-In stable cell lines. Both proteins were properly folded as confirmed by binding to H5N1-neutralizing conformation-dependent human monoclonal antibodies. The HA0 (with unmodified cleavage site) was monomeric, while the HA1 contained oligomeric forms. Upon rabbit immunization, both HA proteins elicited neutralizing antibodies against the homologous virus (A/Vietnam/1203/2004, clade 1) as well as cross-neutralizing antibodies against heterologous H5N1 clade 2 strains, including A/Indonesia/5/2005. These results exceeded the human antibody responses against the inactivated sub-virion H5N1 vaccine.Our data suggest that the 293 Flp-In system could serve as a platform for rapid expression of HA immunogens in mammalian cells from emerging influenza strains

    The Distinct Conformational Dynamics of K-Ras and H-Ras A59G

    Get PDF
    Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species
    corecore