In the light of several recent developments we revisit the phenomenon of
galactic stellar disk truncations. Even 25 years since the first paper on outer
breaks in the radial light profiles of spiral galaxies, their origin is still
unclear. The two most promising explanations are that these 'outer edges'
either trace the maximum angular momentum during the galaxy formation epoch, or
are associated with global star formation thresholds. Depending on their true
physical nature, these outer edges may represent an improved size
characteristic (e.g., as compared to D_25) and might contain fossil evidence
imprinted by the galaxy formation and evolutionary history. We will address
several observational aspects of disk truncations: their existence, not only in
normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed
shape, not sharp cut-offs as thought before, but in fact demarcating the start
of a region with a steeper exponential distribution of starlight; their
possible association with bars; as well as problems related to the
line-of-sight integration for edge-on galaxies (the main targets for truncation
searches so far). Taken together, these observations currently favour the
star-formation threshold model, but more work is necessary to implement the
truncations as adequate parameters characterising galactic disks.Comment: LaTeX, 10 pages, 6 figures, presented at the "Penetrating Bars
through Masks of Cosmic Dust" conference in South Africa, proceedings
published by Kluwer, and edited by Block, D.L., Freeman, K.C., Puerari, I., &
Groess, R; v3 to match published versio