20 research outputs found

    Pattern evolution and modal decomposition of Faraday waves in a brimful cylinder

    Get PDF
    This paper investigates the steady-state pattern evolution of symmetric Faraday waves excited in a brimful cylindrical container when driving parameters much exceed critical thresholds. In such liquid systems, parametric surface responses are typically considered as the resonant superposition of unstable standing waves. A modified free-surface synthetic Schlieren method is employed to obtain full three-dimensional spatial reconstructions of instantaneous surface patterns. Multi-azimuth structures and localized travelling waves during the small-elevation phases of the oscillation cycle give rise to modal decomposition in the form of -basis modes. Two-step surface-fitting results provide insight into the spatiotemporal characteristics of dominant wave components and corresponding harmonics in the experimental observations. Arithmetic combination of modal indices and uniform frequency distributions reveal the nonlinear mechanisms behind pattern formation and the primary pathways of energy transfer. Taking the hypothetical surface manifestation of multiple azimuths as the modal solutions, a linear stability analysis of the inviscid system is utilised to calculate fundamental resonance tongues (FRTs) with non-overlapping bottoms, which correspond to subharmonic or harmonic -basis modes induced by surface instability at the air-liquid interface. Close relationships between experimental observations and corresponding FRTs provide qualitative verification of dominant modes identified using surface-fitting results. This supports the validity and rationality of the applied -basis modes.</p

    Barrier lake formation due to landslide impacting a river: A numerical study using a double layer-averaged two-phase flow model

    Get PDF
    A granular landslide impacting a river may lead to the formation of a landslide dam blocking the streamflow, and subsequently create a barrier lake. Should a barrier lake outburst, the flood may be destructive and spell disastrous consequences downstream. The last decade or so has witnessed a number of experimental and numerical investigations on barrier lake outburst flooding, whilst studies on barrier lake formation remain rare – a physically enhanced and practically viable mathematical model is still missing. Generally, barrier lake formation is characterized by multi-physical, interactive processes between water flow, multi-sized sediment transport and morphological evolution. Here, a new double layer-averaged two-phase flow model is proposed, which is an advance on existing continuum models that involve a single-phase flow assumption and presume a single sediment size, and discrete models that preclude fine grains and assume narrow grain size distributions. The proposed model is first validated against data from previous laboratory experiments of waves due to landslides impacting reservoirs and landslide dam formation over dry valleys. Then it is applied to explore the complicated mechanism and threshold for barrier lake formation. The water and grain velocities are shown to be disparate, characterizing the primary role of grains in driving water movement during subaqueous landslide motion and also demonstrating the need for a two-phase flow approach. The grain size effects are revealed, i.e., coarse grains and grain-size uniformity favour barrier lake formation. A new threshold condition is proposed for barrier lake formation, integrating the landslide-to-river momentum ratio and grain size effects. The present work facilitates a promising modelling framework for solving barrier lake formation, thereby underpinning the assessment of flood hazards due to barrier lakes

    Black-odorous water bodies annual dynamics in the context of climate change adaptation in Guangzhou City, China

    Get PDF
    Black-odorous water (BOW) in urban areas has brought detrimental ecological effects and posed a threat to the health of surrounding residents. Identifying BOWs in urban areas is difficult because they are usually small in area, and discontinuous in spatial distribution. The efforts to adapt to climate change in cities have a direct connection to urban environment and may affect the dynamics of BOWs, but their relationship has seldom been addressed in previous research. This research builds a new urban BOW detection model using Gaofen (GF) images and ground-level in-situ water quality data to detect the spatiotemporal dynamics of BOWs in Guangzhou City's main urban area from 2016 to 2020, when comprehensive climate adaptation strategy has been implemented as a pilot metropolitan area in China. Spatial analysis in the study area with a total of 97 focused rivers revealed a decreasing trend in BOW occurrence (from 85.57% in 2016 to 21.65% in 2020) in the context of climate change adaptation efforts. Redundancy analysis between BOWs occurrence and environmental factors showed that across the entire study area, the contributions of anthropogenic factors (highest proportion at 14.3% for the area percentage of built-ups) to BOW, such as population density, agricultural water use, domestic water use, and so on, distinctly stronger than climatic drivers (largest contribution of 4.4% for temperature). The results suggested that climate change adaptation efforts help to decrease BOW occurrence in the study area, while exploring the response mechanism between climate change adaptation measures and the changes of BOWs is necessary in the future research. The findings were conducive to the development of targeted measures to decrease the occurrence of urban BOWs while improving adaptability of the city to climate change

    Improving global accessibility to offshore wind power through decreased operations and maintenance costs: a hydrodynamic analysis

    Get PDF
    Improved access to renewable energy in developing economies will be a major factor in future global efforts to reduce CO2 emissions, while simultaneously raising living conditions in areas presently without or with only limited access to electricity. Coastal populations stand to benefit greatly from reduced costs of offshore wind farms, which are one of the fastest growing and most economical sources of marine renewable energy. A considerable drawback of offshore wind power is the high cost of operations and maintenance (O&M), which can account for 25-50% of total energy production costs. Present-day maintenance procedures, using crew transfer vessels, rely on the significant wave height (HS) as the limiting factor by which to decide whether or not it is safe to access the offshore turbines. In practice, HS has to be applied conservatively, thus raising the costs through increased downtime. A method is proposed here with the objective of reducing overall costs through improved analysis of the motion of the crew transfer vessels (CTVs) used to transport repair technicians onto offshore wind turbine structures. CTV motion depends on the hydrodynamic forces incident on the vessel under operating conditions and the effect that the presence of the turbine has on the flow field. A change in the hydrodynamic field caused by the turbine monopile can cause a vessel abutted against the turbine support column to lose frictional contact and slip. Using the open-source computational fluid dynamics software, OpenFOAM, and in situ experimental results, the diffracted surface elevation and a wave kinematics model for the near-wake of a turbine monopile are presented. More accurate estimates of significant wave height and wave kinematics incident on a vessel close to a turbine monopile will facilitate much improved analysis of vessel motions under operational conditions

    Deficiency and excess of groundwater iodine and their health associations

    Get PDF
    More than two billion people worldwide have suffered thyroid disorders from either iodine deficiency or excess. By creating the national map of groundwater iodine throughout China, we reveal the spatial responses of diverse health risks to iodine in continental groundwater. Greater non-carcinogenic risks relevant to lower iodine more likely occur in the areas of higher altitude, while those associated with high groundwater iodine are concentrated in the areas suffered from transgressions enhanced by land over-use and intensive anthropogenic overexploitation. The potential roles of groundwater iodine species are also explored: iodide might be associated with subclinical hypothyroidism particularly in higher iodine regions, whereas iodate impacts on thyroid risks in presence of universal salt iodization exhibit high uncertainties in lower iodine regions. This implies that accurate iodine supply depending on spatial heterogeneity and dietary iodine structure optimization are highly needed to mitigate thyroid risks in iodine-deficient and -excess areas globally

    Irregular wave runup statistics on plane beaches: application of a Boussinesq-type model incorporating a generating-absorbing sponge layer and second-order wave generation

    Get PDF
    Efficient absorption of reflected waves at the offshore boundary is a prerequisite for the accurate physical or theoretical modelling of long-duration irregular wave runup statistics at uniform, gently sloped beaches. This paper presents an implementation of the method suggested by Zhang et al. (2014) to achieve reflected wave absorption and simultaneous generation and propagation of incident waves in an existing numerical wave flume incorporating a moving boundary wavemaker. A generating–absorbing layer is incorporated within this 1DH hybrid Boussinesq-nonlinear shallow water equation model such that inshore-travelling incident waves, encompassing bound-wave structure approximately correct to second order, propagate unhindered while offshore-travelling reflected waves are absorbed. Once validated, the method is used to compile random wave runup statistics on uniform beach slopes broadly representative of dissipative, intermediate, and reflective beaches. Analyses of the individual runup time series, ensemble statistics and comparison to an empirical formula based on experimental runup data suggest that the main aspects of runup observed in the field are properly represented by the model. Existence of an upper limit on maximum runup is investigated using a simple extreme-value statistical analysis. Spectral saturation is examined by considering ensemble-averaged swash spectra for three representative beach slopes subject to incident waves with two different offshore significant wave heights. All spectra show f^−4 roll-off at high frequencies in agreement with many previous field studies. The effect is also investigated of the swash motions preceding one particular extreme runup event on the eventual maximum runup elevation

    Microbial reduction and precipitation of vanadium (V) in groundwater by immobilized mixed anaerobic culture

    Get PDF
    Vanadium is an important contaminant impacted by natural and industrial activities. Vanadium (V) reduction efficiency as high as 87.0% was achieved by employing immobilized mixed anaerobic sludge as inoculated seed within 12 h operation, while V(IV) was the main reduction product which precipitated instantly. Increasing initial V(V) concentration resulted in the decrease of V(V) removal efficiency, while this index increased first and then decreased with the increase of initial COD concentration, pH and conductivity. High-throughput 16S rRNA gene pyrosequencing analysis indicated the decreased microbial diversity. V(V) reduction was realized through dissimilatory reduction process by significantly enhanced Lactococcus and Enterobacter with oxidation of lactic and acetic acids from fermentative microorganisms such as the enriched Paludibacter and the newly appeared Acetobacterium, Oscillibacter. This study is helpful to detect new functional species for V(V) reduction and constitutes a step ahead in developing in situ bioremediations of vanadium contamination. (C) 2015 Elsevier Ltd. All rights reserved.National Natural Science Foundation of China (NSFC) [41440025, 21307117]; Beijing Excellent Talent Training Project [2013D009015000003]; Beijing Higher Education Young Elite Teacher Project [YETP0657]SCI(E)[email protected]

    Resource Characterization of Sites in the Vicinity of an Island near a Landmass

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Renewable energy technologies are undergoing rapid development, the global aim being to achieve energy security and lower carbon emissions. Of marine renewable energy sources, tidal power has inherent predictability and large theoretical potential, estimated to exceed 8000 (TW h)a−1 in coastal basins. Coastal sites in the vicinity of an island near a landmass are prime candidates for tidal stream power exploitation by arrays of turbines. This paper characterizes numerically the upper limit to power extraction of turbines installed at such sites. It is demonstrated that the maximum power extracted from the strait is generally not well approximated by either the power dissipated naturally at the seabed or the undisturbed kinetic power of flow in the strait. An analytical channel model [C. Garrett and P. Cummins, “The power potential of tidal currents in channels,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 461, no. 2060, pp. 2563–2572, Aug. 2005] provides lower predictions than the present numerical model of available power in the strait due to the analytical model not accounting for changes to the driving head resulting from power extraction and flow diversion offshore of the island. For geometrically long islands extending parallel to the landmass, the numerically predicted extracted power is satisfactorily approximated by the power naturally dissipated at the seabed, and there is reasonable agreement with the estimate by the channel analytical model. It is found that the results are sensitive to choice of boundary conditions used for the coastlines, the eddy viscosity, and bed friction. Increased offshore depth and lower blockage both reduce the maximum power extracted from the strait. The results indicate that power extracted from the site can be maximum if extraction is implemented both in the strait and offshore of the island. Presence of the landmass and increasing island dimensions both enhance power extraction.This work was supported by General Electric Renewable Energy with funding from the ETI and the EPSRC through the Industrial Doctoral Centre for Offshore Renewable Energy (EP/J500847/1). The authors would like to thank the Applied Modelling and Computation Group at Imperial College of London for free access to the software Fluidity and their support

    Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds

    Get PDF
    By employing promising single-chamber microbial fuel cells (MFCs) as renewable power sources, an aerated electrochemical system is proposed and for nitrogen-containing organic compounds (pyridine and methyl orange) removals. Carbon felt performed the best as electrode material while lower initial contaminant concentration and lower initial pH value could improve the performance. A degradation efficiency of 82.9% for pyridine was achieved after 360 min electrolysis with its initial concentration of 200 mg/L, initial pH of 3.0 and applied voltage of 700 mV. Mechanisms study implied that indirect electrochemical oxidation by generated hydrogen peroxide was responsible for their degradation. This study provides an alternative utilization form of low bioelectricity from MFCs and reveals that applying it to electrochemical process is highly-efficient as well as cost-effective for degradation of nitrogen-containing organic compounds. (C) 2015 Elsevier B.V. All rights reserved.National Natural Science Foundation of China (NSFC) [21307117, 41440025]; Research Fund for the Doctoral Program of Higher Education of China [20120022120005]; Beijing Excellent Talent Training Project [2013D009015000003]; Beijing Higher Education Young Elite Teacher Project [YETP0657]; Fundamental Research Funds for the Central Universities [2652015226, 2652015131]SCI(E)[email protected]
    corecore