38 research outputs found

    Placental glycoredox dysregulation associated with disease progression in an animal model of superimposed preeclampsia

    Get PDF
    Pregnancies carried by women with chronic hypertension are at increased risk of superimposed preeclampsia, but the placental pathways involved in disease progression remain poorly understood. In this study, we used the stroke-prone spontaneously hypertensive rat (SHRSP) model to investigate the placental mechanisms promoting superimposed preeclampsia, with focus on cellular stress and its influence on galectin–glycan circuits. Our analysis revealed that SHRSP placentas are characterized by a sustained activation of the cellular stress response, displaying significantly increased levels of markers of lipid peroxidation (i.e., thiobarbituric acid reactive substances (TBARS)) and protein nitration and defective antioxidant enzyme expression as early as gestation day 14 (which marks disease onset). Further, lectin profiling showed that such redox imbalance was associated with marked alterations of the placental glycocode, including a prominent decrease of core 1 O-glycan expression in trophoblasts and increased decidual levels of sialylation in SHRSP placentas. We also observed significant changes in the expression of galectins 1, 3 and 9 with pregnancy progression, highlighting the important role of the galectin signature as dynamic interpreters of placental microenvironmental challenges. Collectively, our findings uncover a new role for the glycoredox balance in the pathogenesis of superimposed preeclampsia representing a promising target for interventions in hypertensive disorders of pregnancy

    Phenotyping placental oxygenation in Lgals1 deficient mice using (19)F MRI

    Get PDF
    Placental hypoperfusion and hypoxia are key drivers in complications during fetal development such as fetal growth restriction and preeclampsia. In order to study the mechanisms of disease in mouse models, the development of quantitative biomarkers of placental hypoxia is a prerequisite. The goal of this exploratory study was to establish a technique to noninvasively characterize placental partial pressure of oxygen (PO(2)) in vivo in the Lgals1 (lectin, galactoside-binding, soluble, 1) deficient mouse model of preeclampsia using fluorine magnetic resonance imaging. We hypothesized a decrease in placental oxygenation in knockout mice. Wildtype and knockout animals received fluorescently labeled perfluoro-5-crown-15-ether nanoemulsion i.v. on day E14-15 during pregnancy. Placental PO(2) was assessed via calibrated (19)F MRI saturation recovery T(1) mapping. A gas challenge with varying levels of oxygen in breathing air (30%, 60% and 100% O(2)) was used to validate that changes in oxygenation can be detected in freely breathing, anesthetized animals. At the end of the experiment, fluorophore-coupled lectin was injected i.v. to label the vasculature for histology. Differences in PO(2) between breathing conditions and genotype were statistically analyzed with linear mixed-effects modeling. As expected, a significant increase in PO(2) with increasing oxygen in breathing air was found. PO(2) in Lgals1 knockout animals was decreased but this effect was only present at 30% oxygen in breathing air, not at 60% and 100%. Histological examinations showed crossing of the perfluorocarbon nanoemulsion to the fetal blood pool but the dominating contribution of (19)F MR signal is estimated at > 70% from maternal plasma based on volume fraction measurements of previous studies. These results show for the first time that (19)F MRI can characterize oxygenation in mouse models of placental malfunction

    Acceleration of TAA-induced liver fibrosis by stress exposure is associated with upregulation of nerve growth factor and glycopattern deviations

    Get PDF
    Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased β1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis

    Maternal-derived galectin 1 shapes the placenta niche through Sda terminal glycosylation: Implication for preeclampsia

    Get PDF
    Placental abnormalities cause impaired fetal growth and poor pregnancy outcome (e.g. Preeclampsia) with long lasting consequences for the mother and offspring. The molecular dialogue between the maternal niche and the developing placenta is critical for the function of this organ. Galectin-1 (gal-1), a highly expressed glycan-binding protein at the maternal-fetal interface, orchestrates the maternal adaptation to pregnancy and placenta development. Downregulation or deficiency of gal-1 during pregnancy is associated with the development of PE, however, the maternal- and placental- derived gal-1 contributions to the disease onset are largely unknown. We demonstrate that lack of gal-1 imposes a risk for PE development in a niche-specific manner and this is accompanied by a placental dysfunction highly influenced by the absence of maternal- derived gal-1. Notably, differential placental glycosylation through the Sda-capped N-glycans dominates the invasive trophoblast capacity triggered by maternal- derived gal-1. Our findings show that gal-1 derived from the maternal niche is essential for healthy placenta development and indicate that impairment of the gal-1 signaling pathway within the maternal niche could be a molecular cause for maternal cardiovascular maladaptation during pregnancy

    Neonatal Genetic Variation in Steroid Metabolism and Key Respiratory Function Genes and Perinatal Outcomes in Single and Multiple Courses of Corticosteroids

    Get PDF
    To evaluate the association of steroid metabolism and respiratory gene polymorphisms in neonates exposed to antenatal corticosteroids (ACS) with respiratory outcomes, small for gestational age (SGA) and response to repeat ACS

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Event-plane-dependent Dihadron Correlations With Harmonic Vn Subtraction In Au + Au Collisions At S Nn =200 Gev

    Get PDF
    STAR measurements of dihadron azimuthal correlations (Δφ) are reported in midcentral (20-60%) Au+Au collisions at sNN=200 GeV as a function of the trigger particle's azimuthal angle relative to the event plane, φs=|φt-ψEP|. The elliptic (v2), triangular (v3), and quadratic (v4) flow harmonic backgrounds are subtracted using the zero yield at minimum (ZYAM) method. The results are compared to minimum-bias d+Au collisions. It is found that a finite near-side (|Δφ|π/2) correlation shows a modification from d+Au data, varying with φs. The modification may be a consequence of path-length-dependent jet quenching and may lead to a better understanding of high-density QCD. © 2014 American Physical Society.894DOE; U.S. Department of EnergyArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02. 130;Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 084;Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration), () NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03. 085;Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Heinz, U., Kolb, P.F., (2002) Nucl. Phys. A, 702, p. 269. , NUPABL 0375-9474 10.1016/S0375-9474(02)00714-5Wang, X.-N., Gyulassy, M., (1992) Phys. Rev. Lett., 68, p. 1480. , PRLTAO 0031-9007 10.1103/PhysRevLett.68.1480Adler, S., (2003) Phys. Rev. Lett., 91, p. 072301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91. 072301;Adams, J., (2003) Phys. Rev. Lett., 91, p. 072304. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.91.072304;Adler, C., (2003) Phys. Rev. Lett., 90, p. 082302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.90.082302Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301;Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Adams, J., (2004) Phys. Rev. Lett., 93, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.93.252301Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Alver, B., (2008) Phys. Rev. C, 77, p. 014906. , PRVCAN 0556-2813 10.1103/PhysRevC.77.014906Feng, A., (2008), Ph.D. thesis, Institute of Particle Physics, CCNU, (unpublished);Konzer, J., (2013), Ph.D. thesis, Purdue University, (unpublished)Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Ackermann, K.H., (2003) Nucl. Instrum. Meth., A499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Borghini, N., Dinh, P.M., Ollitrault, J.Y., (2000) Phys. Rev. C, 62, p. 034902. , PRVCAN 0556-2813 10.1103/PhysRevC.62.034902Adams, J., (2005) Phys. Rev. C, 72, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.72.014904Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Bielcikova, J., (2004) Phys. Rev C, 69, p. 021901. , (R) () PRVCAN 0556-2813 10.1103/PhysRevC.69.021901;Konzer, J., Wang, F., (2009) Nucl. Instrum. Meth., A606, p. 713. , NIMAER 0168-9002 10.1016/j.nima.2009.05.011Mishra, A.P., (2008) Phys. Rev. C, 77, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.77.064902;Alver, B., Roland, G., (2010) Phys. Rev. C, 81, p. 054905. , PRVCAN 0556-2813 10.1103/PhysRevC.81.054905Alver, B., Roland, G., (2010) Phys. Rev. C, 82, p. 039903. , 0556-2813 10.1103/PhysRevC.82.039903Xu, J., Ko, C.M., (2011) Phys. Rev. C, 84, p. 014903. , PRVCAN 0556-2813 10.1103/PhysRevC.84.014903Petersen, H., (2010) Phys. Rev. C, 82, p. 041901. , PRVCAN 0556-2813 10.1103/PhysRevC.82.041901Takahashi, J., (2009) Phys. Rev. Lett., 103, p. 242301. , PRLTAO 0031-9007 10.1103/PhysRevLett.103.242301;Andrade, R.P.G., (2012) Phys. Lett. B, 712, p. 226. , PYLBAJ 0370-2693 10.1016/j.physletb.2012.04.044;Qian, W.L., (2013) Phys. Rev. C, 87, p. 014904. , PRVCAN 0556-2813 10.1103/PhysRevC.87.014904Schenke, B., Jeon, S., Gale, C., (2011) Phys. Rev. Lett., 106, p. 042301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.042301;Qiu, Z., Heinz, U.W., (2011) Phys. Rev. C, 84, p. 024911. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024911;Song, H., (2011) Phys. Rev. Lett., 106, p. 192301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.192301;Schenke, B., Jeon, S., Gale, C., (2012) Phys. Rev. C, 85, p. 024901. , PRVCAN 0556-2813 10.1103/PhysRevC.85.024901;Schenke, B., Tribedy, P., Venugopalan, R., (2012) Phys. Rev. Lett., 108, p. 252301. , PRLTAO 0031-9007 10.1103/PhysRevLett.108.252301Adare, A., (2011) Phys. Rev. Lett., 107, p. 252301. , (PHENIX Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.107.252301Adamczyk, L., (2013) Phys. Rev. C, 88, p. 014904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.88.014904Abelev, B.I., (2008) Phys. Rev. Lett., 101, p. 252301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.101.252301Teaney, D., Yan, L., (2011) Phys. Rev. C, 83, p. 064904. , PRVCAN 0556-2813 10.1103/PhysRevC.83.064904Pandit, Y., (2013) J. Phys. Conf. Ser., 446, p. 012012. , (STAR Collaboration),. 1742-6596 10.1088/1742-6596/446/1/012012Ajitanand, N.N., (2005) Phys. Rev. C, 72, p. 011902. , PRVCAN 0556-2813 10.1103/PhysRevC.72.011902Agakishiev, G., (2012) Phys. Rev. C, 86, p. 064902. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.86.064902Adler, C., (2002) Phys. Rev. C, 66, p. 034904. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.66.034904Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration), () PRVCAN 0556-2813 10.1103/PhysRevC.80.064912;Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Adler, S.S., (2006) Phys. Rev. Lett., 97, p. 052301. , (PHENIX Collaboration), () PRLTAO 0031-9007 10.1103/PhysRevLett.97. 052301;Adare, A., (2008) Phys. Rev. C, 78, p. 014901. , (PHENIX Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.78.014901Stoecker, H., (2005) Nucl. Phys. A, 750, p. 121. , NUPABL 0375-9474 10.1016/j.nuclphysa.2004.12.074;Casalderrey-Solana, J., Shuryak, E.V., Teaney, D., (2005) J. Phys. Conf. Ser., 27, p. 22. , 1742-6588 10.1088/1742-6596/27/1/003;Ruppert, J., Müller, B., (2005) Phys. Lett. B, 618, p. 123. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.04.075Betz, B., (2010) Phys. Rev. Lett., 105, p. 222301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.222301;Ma, G.L., Wang, X.N., (2011) Phys. Rev. Lett., 106, p. 162301. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.162301Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Adamczyk, L., (2014) Phys. Rev. Lett., 112, p. 122301. , (STAR Collaboration),. 10.1103/PhysRevLett.112.12230

    The Cholecystectomy As A Day Case (CAAD) Score: A Validated Score of Preoperative Predictors of Successful Day-Case Cholecystectomy Using the CholeS Data Set

    Get PDF
    Background Day-case surgery is associated with significant patient and cost benefits. However, only 43% of cholecystectomy patients are discharged home the same day. One hypothesis is day-case cholecystectomy rates, defined as patients discharged the same day as their operation, may be improved by better assessment of patients using standard preoperative variables. Methods Data were extracted from a prospectively collected data set of cholecystectomy patients from 166 UK and Irish hospitals (CholeS). Cholecystectomies performed as elective procedures were divided into main (75%) and validation (25%) data sets. Preoperative predictors were identified, and a risk score of failed day case was devised using multivariate logistic regression. Receiver operating curve analysis was used to validate the score in the validation data set. Results Of the 7426 elective cholecystectomies performed, 49% of these were discharged home the same day. Same-day discharge following cholecystectomy was less likely with older patients (OR 0.18, 95% CI 0.15–0.23), higher ASA scores (OR 0.19, 95% CI 0.15–0.23), complicated cholelithiasis (OR 0.38, 95% CI 0.31 to 0.48), male gender (OR 0.66, 95% CI 0.58–0.74), previous acute gallstone-related admissions (OR 0.54, 95% CI 0.48–0.60) and preoperative endoscopic intervention (OR 0.40, 95% CI 0.34–0.47). The CAAD score was developed using these variables. When applied to the validation subgroup, a CAAD score of ≤5 was associated with 80.8% successful day-case cholecystectomy compared with 19.2% associated with a CAAD score >5 (p < 0.001). Conclusions The CAAD score which utilises data readily available from clinic letters and electronic sources can predict same-day discharges following cholecystectomy
    corecore