113 research outputs found

    The endpoints project: Novel testing strategies for endocrine disruptors linked to developmental neurotoxicity

    Get PDF
    Copyright © 2020 by the authors. Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (The ENDpoiNTs project)

    Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals—the athena project

    Get PDF
    The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation

    Clinically diagnosed childhood asthma and follow-up of symptoms in a Swedish case control study

    Get PDF
    BACKGROUND: Childhood asthma has risen dramatically not only in the western societies and now forms a major and still increasing public health problem. The aims of this study were to follow up at the age of ten the patterns of asthma symptoms and associations among children with a clinically diagnosed asthma in a sizeable urban-rural community and to in compare them with demographic controls using a standardised questionnaire. METHODS: In a defined region in Sweden with a population of about 150 000 inhabitants, all children (n = 2 104) born in 1990 were recorded. At the age of seven all primary care and hospital records of the 1 752 children still living in the community were examined, and a group of children (n = 191) was defined with a well-documented and medically confirmed asthma diagnosis. At the age of ten, 86 % of these cases (n = 158) and controls (n = 171) completed an ISAAC questionnaire concerning asthma history, symptoms and related conditions. RESULTS: Different types of asthma symptoms were highly and significantly over-represented in the cases. Reported asthma heredity was significantly higher among the cases. No significant difference in reported allergic rhinitis or eczema as a child was found between cases and controls. No significant difference concerning social factors or environmental exposure was found between case and controls. Among the control group 4.7 % of the parents reported that their child actually had asthma. These are likely to be new asthma cases between the age of seven and ten and give an estimated asthma prevalence rate at the age of ten of 15.1 % in the studied cohort. CONCLUSION: A combination of medical verified asthma diagnosis through medical records and the use of self-reported symptom through the ISAAC questionnaire seem to be valid and reliable measures to follow-up childhood asthma in the local community. The asthma prevalence at the age of ten in the studied birth cohort is considerably higher than previous reports for Sweden. Both the high prevalence figure and allowing the three-year lag phase for further settling of events in the community point at the complementary roles of both hospital and primary care in the comprehensive coverage and control of childhood asthma in the community

    Removing Critical Gaps in Chemical Test Methods by Developing New Assays for the Identification of Thyroid Hormone System-Disrupting Chemicals—The ATHENA Project

    Get PDF
    Copyright © 2020 by the authors. The test methods that currently exist for the identification of thyroid hormone system-disrupting chemicals are woefully inadequate. There are currently no internationally validated in vitro assays, and test methods that can capture the consequences of diminished or enhanced thyroid hormone action on the developing brain are missing entirely. These gaps put the public at risk and risk assessors in a difficult position. Decisions about the status of chemicals as thyroid hormone system disruptors currently are based on inadequate toxicity data. The ATHENA project (Assays for the identification of Thyroid Hormone axis-disrupting chemicals: Elaborating Novel Assessment strategies) has been conceived to address these gaps. The project will develop new test methods for the disruption of thyroid hormone transport across biological barriers such as the blood–brain and blood–placenta barriers. It will also devise methods for the disruption of the downstream effects on the brain. ATHENA will deliver a testing strategy based on those elements of the thyroid hormone system that, when disrupted, could have the greatest impact on diminished or enhanced thyroid hormone action and therefore should be targeted through effective testing. To further enhance the impact of the ATHENA test method developments, the project will develop concepts for better international collaboration and development in the area of thyroid hormone system disruptor identification and regulation.EU Horizon 2020 programme, grant number 82516

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
    corecore