115 research outputs found

    Advances in Shallow Landslide Hydrology and Triggering Mechanisms: A Multidisciplinary Approach

    Get PDF
    The vadose zone of steep slopes is often affected by rainfallinduced shallow landslides, which can cause widespread direct and indirect damage to the terrain and infrastructures, as well as urban and rural developments. These phenomena are determined by hydrological or subsurface flow processes and also mechanical (stress equilibrium) processes. Some models attempt to link dynamics of hydrologic behavior with the mechanical state of a hillslope and the onset of failure. However, the hydrological dynamics leading to shallow landslide initiation, the hydraulic properties at the slope scale, and the role of hysteretic effects as well as the soil nonequilibrium processes in slope stability assessment are still not completely understood and require further investigation. Furthermore, these open questions are generally treated separately by geologists, hydrologists, agronomists, and geotechnical engineers, whereas a multidisciplinary approach is a key factor in the study of these phenomena occurring in the vadose zone

    Preliminary Validation of a Novel Method for the Assessment of Effective Stress State in Partially Saturated Soils by Cone Penetration Tests

    Get PDF
    A proper assessment of the soil effective stress state is crucial in many cases to identify a potential geological/geotechnical hazard as shallow landslides or failure of levees that may have a significant impact on human activities and development. This paper is aimed at validating a methodology for the expeditious and economic determination of effective stress state in the vadose zone recently proposed by Lo Presti et al. in 2016. The method is based on the interpretation of cone penetration tests (CPTu). Its validation was carried out by comparing the CPTu predicted values of suction against the measured ones in a well-documented and monitored site. The comparison also includes the prediction of suction that was obtained by using the so-called Modified Kovacs model (MK). Moreover, additional data of water content and saturation degree from another site were used to predict the suction by using the MK model. These values of suction were compared with those inferred by the CPTu

    Litho-structure of the Oltrepo Pavese, Northern Apennines (Italy)

    Get PDF
    In this article we present a detailed litho-structural map of the Oltrepo Pavese, a sector of the Northern Apennines, Southern Lombardy, Italy. Lithology and geological structures are an important basis for different disciplines of Earth Sciences. In particular, for the assessment of earth surface processes such as soil erosion, mass movements, flooding, etc. The Oltrepo Pavese is characterised by a complex geology and related tectonic settings. In this study, we conducted a comprehensive lithological mapping approach considering existing geological maps, and detailed field surveys. The lithotypes have been subdivided into 11 classes based on the dominant outcropping lithologies. Integrating bibliographic data and a detailed Digital Terrain Analysis of a high-resolution DTM (5 m) we detected faults, folds and tectonic lineaments in the study area. The final result is represented by a litho-structural map of the Oltrepo Pavese-area, consisting in two shape files elaborated in an open source GIS environment

    Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides

    Get PDF
    Assessing hazard of rainfall-induced shallow landslides represents a challenge for the risk management of urbanized areas for which the setting up of early warning systems, based on the reconstruction of reliable rainfall thresholds and rainfall monitoring, is a solution more practicable than the delocalization of settlements and infrastructures. Consequently, the reduction in uncertainties afecting the estimation of rainfall thresholds conditions, leading to the triggering of slope instabilities, is a fundament task to be tackled. In such a view, coupled soil hydrological monitoring and physics-based modeling approaches are presented for estimating rainfall thresholds in two diferent geomorphological environments prone to shallow landsliding. Based on the comparison of results achieved for silty– clayey soils characterizing Oltrepò Pavese area (northern Italy) and ash-fall pyroclastic soils mantling slopes of Sarno Mountains ridge (southern Italy), this research advances the understanding of the slope hydrological response in triggering shallow landslides. Among the principal results is the comprehension that, mainly depending on geological and geomorphological settings, geotechnical and hydrological properties of soil coverings have a fundamental control on the timing and intensity of hydrological processes leading to landslide initiation. Moreover, results obtained show how the characteristics of the soil coverings control the slope hydrological response at diferent time scales, making the antecedent soil hydrological conditions a not negligible factor for estimating landslide rainfall thresholds. The approaches proposed can be conceived as an adaptable tool to assess hazard to initiation of shallow rainfall-induced landslides and to implement early-warning systems from site-specifc to distributed (catchment or larger) scales

    Estimation of the susceptibility of a road network to shallow landslides with the integration of the sediment connectivity

    Get PDF
    Abstract. Landslides cause severe damage to the road network of the hit zone, in terms of both direct (partial or complete destruction of a road or blockages) and indirect (traffic restriction or the cut-off of a certain area) costs. Thus, the identification of the parts of the road network that are more susceptible to landslides is fundamental to reduce the risk to the population potentially exposed and the financial expense caused by the damage. For these reasons, this paper aimed to develop and test a data-driven model for the identification of road sectors that are susceptible to being hit by shallow landslides triggered in slopes upstream from the infrastructure. This model was based on the Generalized Additive Method, where the function relating predictors and response variable is an empirically fitted smooth function that allows fitting the data in the more likely functional form, considering also non-linear relations. This work also analyzed the importance, on the estimation of the susceptibility, of considering or not the sediment connectivity, which influences the path and the travel distance of the materials mobilized by a slope failure until hitting a potential barrier such as a road. The study was carried out in a catchment of northeastern Oltrepò Pavese (northern Italy), where several shallow landslides affected roads in the last 8 years. The most significant explanatory variables were selected by a random partition of the available dataset in two parts (training and test subsets), 100 times according to a bootstrap procedure. These variables (selected 80 times by the bootstrap procedure) were used to build the final susceptibility model, the accuracy of which was estimated through a 100-fold repetition of the holdout method for regression, based on the training and test sets created through the 100 bootstrap model selection. The presented methodology allows the identification, in a robust and reliable way, of the most susceptible road sectors that could be hit by sediments delivered by landslides. The best predictive capability was obtained using a model in which the index of connectivity was also calculated according to a linear relationship, was considered. Most susceptible road traits resulted to be located below steep slopes with a limited height (lower than 50 m), where sediment connectivity is high. Different land use scenarios were considered in order to estimate possible changes in road susceptibility. Land use classes of the study area were characterized by similar connectivity features. As a consequence, variations on the susceptibility of the road network according to different scenarios of distribution of land cover were limited. The results of this research demonstrate the ability of the developed methodology in the assessment of susceptible roads. This could give the managers of infrastructure information about the criticality of the different road traits, thereby allowing attention and economic budgets to be shifted towards the most critical assets, where structural and non-structural mitigation measures could be implemented

    shallow landslides susceptibility assessment in different environments

    Get PDF
    The spatial distribution of shallow landslides is strongly influenced by different climatic conditions and environmental settings. This makes difficult the implementation of an exhaustive monitoring technique for correctly assessing the landslide susceptibility in different environmental contexts. In this work, a unique methodological strategy, based on the statistical implementation of the generalized additive model (GAM), was performed. This method was used to investigate the shallow landslide predisposition of four sites with different geological, geomorphological and land-use characteristics: the Rio Frate and the Versa catchments (Southern Lombardy) and the Vernazza and the Pogliaschina catchments (Eastern Liguria). A good predictive overall accuracy was evaluated computing by the area under the ROC curve (AUROC), with values ranging from 0.76 to 0.82 and estimating the mean accuracy of the model (0.70–0.75). The method showed a high flexibility, which led to a good identification of the most significant predisposing factors for shallow landslide occurrence in the different investigated areas. In particular, detailed susceptibility maps were obtained, allowing to identify the shallow landslide prone areas. This methodology combined with the use of the rainfall thresholds for triggering shallow landslides may provide an innovative tool useful for the improvement of spatial planning and early warning systems

    Identification of a novel pathway in sporadic Amyotrophic Lateral Sclerosis mediated by the long non-coding RNA ZEB1-AS1

    Get PDF
    Background: Deregulation of transcription in the pathogenesis of sporadic Amyotrophic Lateral Sclerosis (sALS) is taking central stage with RNA-sequencing analyses from sALS patients tissues highlighting numerous deregulated long non-coding RNAs (lncRNAs). The oncogenic lncRNA ZEB1-AS1 is strongly downregulated in peripheral blood mononuclear cells of sALS patients. In addition, in cancer-derived cell lines, ZEB1-AS1 belongs to a negative feedback loop regulation with hsa-miR-200c, acting as a molecular sponge for this miRNA. The role of the lncRNA ZEB1-AS1 in sALS pathogenesis has not been characterized yet, and its study could help identifying a possible disease-modifying target. Methods: the implication of the ZEB1-AS1/ZEB1/hsa-miR-200c/BMI1 pathway was investigated in multiple patients-derived cellular models (patients-derived peripheral blood mononuclear cells and induced pluripotent stem cells-derived neural stem cells) and in the neuroblastoma cell line SH-SY5Y, where its function was inhibited via RNA interference. Molecular techniques such as Real Time PCR, Western Blot and Immunofluorescence were used to assess the pathway dysregulation. Results: Our results show a dysregulation of a signaling pathway involving ZEB1-AS1/hsa-miR-200c/β-Catenin in peripheral blood mononuclear cells and in induced pluripotent stem cells-derived neural stem cells from sALS patients. These results were validated in vitro on the cell line SH-SY5Y with silenced expression of ZEB1-AS1. Moreover, we found an increase for ZEB1-AS1 during neural differentiation with an aberrant expression of β-Catenin, highlighting also its aggregation and possible impact on neurite length. Conclusions: Our results support and describe the role of ZEB1-AS1 pathway in sALS and specifically in neuronal differentiation, suggesting that an impairment of β-Catenin signaling and an alteration of the neuronal phenotype are taking place

    Relationship among soil management, organic matter content and root development along the explorable soil profile in the vineyard

    Get PDF
    In the most ancient wine area of the Controlled Denomination of Origin (DOC) “Oltrepò Pavese” in North-West Italy, foothills of the Apennine mountains, the soils of 14 representative vineyards managed for about 10 years with tillage (T) or natural grass-cover (G) or the alternation of the two methods between the rows (GT), were compared for their contents of organic matter, main soil parameters and extent of root development, in the first meter of depth. The soils are fine textured, sometimes calcareous, with low levels of organic matter. G and GT soil treatments showed higher organic matter content (on average 1.4%) than T (0.88%). Better root development (number and area) was observed in G and GT, in comparison with T; the number and size of roots showed a positive correlation with the soil organic matter

    It is time to define an organizational model for the prevention and management of infections along the surgical pathway : a worldwide cross-sectional survey

    Get PDF
    Background The objectives of the study were to investigate the organizational characteristics of acute care facilities worldwide in preventing and managing infections in surgery; assess participants' perception regarding infection prevention and control (IPC) measures, antibiotic prescribing practices, and source control; describe awareness about the global burden of antimicrobial resistance (AMR) and IPC measures; and determine the role of the Coronavirus Disease 2019 pandemic on said awareness. Methods A cross-sectional web-based survey was conducted contacting 1432 health care workers (HCWs) belonging to a mailing list provided by the Global Alliance for Infections in Surgery. The self-administered questionnaire was developed by a multidisciplinary team. The survey was open from May 22, 2021, and June 22, 2021. Three reminders were sent, after 7, 14, and 21 days. Results Three hundred four respondents from 72 countries returned a questionnaire, with an overall response rate of 21.2%. Respectively, 90.4% and 68.8% of participants stated their hospital had a multidisciplinary IPC team or a multidisciplinary antimicrobial stewardship team. Local protocols for antimicrobial therapy of surgical infections and protocols for surgical antibiotic prophylaxis were present in 76.6% and 90.8% of hospitals, respectively. In 23.4% and 24.0% of hospitals no surveillance systems for surgical site infections and no monitoring systems of used antimicrobials were implemented. Patient and family involvement in IPC management was considered to be slightly or not important in their hospital by the majority of respondents (65.1%). Awareness of the global burden of AMR among HCWs was considered very important or important by 54.6% of participants. The COVID-19 pandemic was considered by 80.3% of respondents as a very important or important factor in raising HCWs awareness of the IPC programs in their hospital. Based on the survey results, the authors developed 15 statements for several questions regarding the prevention and management of infections in surgery. The statements may be the starting point for designing future evidence-based recommendations. Conclusion Adequacy of prevention and management of infections in acute care facilities depends on HCWs behaviours and on the organizational characteristics of acute health care facilities to support best practices and promote behavioural change. Patient involvement in the implementation of IPC is still little considered. A debate on how operationalising a fundamental change to IPC, from being solely the HCWs responsibility to one that involves a collaborative relationship between HCWs and patients, should be opened.Peer reviewe
    • …
    corecore