83 research outputs found

    Glial glutamate transporters and maturation of the mouse somatosensory cortex

    Get PDF
    In the adult nervous system, glutamatergic neurotransmission is tightly controlled by neuron-glia interactions through glial glutamate reuptake by the specific transporters GLT-1 and GLAST. Here, we have explored the role of these transporters in the structural and functional maturation of the somatosensory cortex of the mouse. We provide evidence that GLT-1 and GLAST are early and selectively expressed in barrels from P5 to P10. Confocal and electron microscopy confirm that the expression is restricted to the astroglial membrane. By P12, and despite an increased global expression as observed by immunoblotting, the barrel pattern of GLAST and GLT-1 staining is no longer evident. In P10 GLT-1 -/- and GLAST -/- mice, the cytoarchitectural segregation of the barrels is preserved. However, at P9-10, the functional response to whisker stimulation, measured by deoxyglucose uptake, is markedly decreased in GLT-1 -/- and GLAST -/- mice. The role of GLAST is transient since the metabolic response is already restored at P11-12 in GLAST -/- mice and remains unchanged in adulthood. However, deletion of GLT-1 seems to impair the functional metabolic response until adulthood. Our data suggest that astrocyte-neuron interactions via the glial glutamate transporters are involved in the functional maturation of the whisker representation in the somatosensory cortex

    Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease.

    Get PDF
    The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients

    The JAK/STAT3 Pathway Is a Common Inducer of Astrocyte Reactivity in Alzheimer's and Huntington's Diseases.

    Get PDF
    Astrocyte reactivity is a hallmark of neurodegenerative diseases (ND), but its effects on disease outcomes remain highly debated. Elucidation of the signaling cascades inducing reactivity in astrocytes during ND would help characterize the function of these cells and identify novel molecular targets to modulate disease progression. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway is associated with reactive astrocytes in models of acute injury, but it is unknown whether this pathway is directly responsible for astrocyte reactivity in progressive pathological conditions such as ND. In this study, we examined whether the JAK/STAT3 pathway promotes astrocyte reactivity in several animal models of ND. The JAK/STAT3 pathway was activated in reactive astrocytes in two transgenic mouse models of Alzheimer's disease and in a mouse and a nonhuman primate lentiviral vector-based model of Huntington's disease (HD). To determine whether this cascade was instrumental for astrocyte reactivity, we used a lentiviral vector that specifically targets astrocytes in vivo to overexpress the endogenous inhibitor of the JAK/STAT3 pathway [suppressor of cytokine signaling 3 (SOCS3)]. SOCS3 significantly inhibited this pathway in astrocytes, prevented astrocyte reactivity, and decreased microglial activation in models of both diseases. Inhibition of the JAK/STAT3 pathway within reactive astrocytes also increased the number of huntingtin aggregates, a neuropathological hallmark of HD, but did not influence neuronal death. Our data demonstrate that the JAK/STAT3 pathway is a common mediator of astrocyte reactivity that is highly conserved between disease states, species, and brain regions. This universal signaling cascade represents a potent target to study the role of reactive astrocytes in ND

    In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects

    Get PDF
    Huntington's disease (HD) is a neurodegenerative disorder previously thought to be of primary neuronal origin, despite ubiquitous expression of mutant huntingtin (mHtt). We tested the hypothesis that mHtt expressed in astrocytes may contribute to the pathogenesis of HD. To better understand the contribution of astrocytes in HD in vivo, we developed a novel mouse model using lentiviral vectors that results in selective expression of mHtt into striatal astrocytes. Astrocytes expressing mHtt developed a progressive phenotype of reactive astrocytes that was characterized by a marked decreased expression of both glutamate transporters, GLAST and GLT-1, and of glutamate uptake. These effects were associated with neuronal dysfunction, as observed by a reduction in DARPP-32 and NR2B expression. Parallel studies in brain samples from HD subjects revealed early glial fibrillary acidic protein expression in striatal astrocytes from Grade 0 HD cases. Astrogliosis was associated with morphological changes that increased with severity of disease, from Grades 0 through 4 and was more prominent in the putamen. Combined immunofluorescence showed co-localization of mHtt in astrocytes in all striatal HD specimens, inclusive of Grade 0 HD. Consistent with the findings from experimental mice, there was a significant grade-dependent decrease in striatal GLT-1 expression from HD subjects. These findings suggest that the presence of mHtt in astrocytes alters glial glutamate transport capacity early in the disease process and may contribute to HD pathogenesis

    Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake

    Get PDF
    Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA) was significantly reduced (by ∼75%) in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs), whose recovery was significantly higher in CNTF rats compared to controls (∼40% vs. ∼7%), confirming an enhanced resistance to excitotoxicity. The GT inhibitor dl-threo-β-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (γ-d-glutamylglycine) also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow

    Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently, there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencephalographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However, when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal

    Reactive astrocyte nomenclature, definitions, and future directions

    Get PDF
    Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions

    Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors.

    Get PDF
    Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain

    Does glutamate image your thoughts?

    No full text
    Functional imaging methods exploit the relationship between neuronal activity, energy demand and cerebral blood flow to functionally map the brain. Despite the increasing use of these imaging tools in basic and clinical neuroscience, the neurobiological processes underlying the imaging signals remain unclear. Recently, interest has been focused on uncovering the signals that trigger the metabolic and vascular changes accompanying variations in neuronal activity. Advances in this field have demonstrated that release of the major excitatory neurotransmitter glutamate initiates diverse signaling processes between neurons and astrocytes, and that this signaling could be crucial for the occurrence of brain imaging signals. In this article we review the hypothesis that glutamate represents a common trigger for both neurometabolic and neurovascular coupling
    corecore