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Abstract   209 

 210 

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional 211 

remodelling in response to injury, disease, or infection of the central nervous system (CNS). 212 

Although this remodelling was first described over a century ago, uncertainties and controversies 213 

remain, regarding the contribution of reactive astrocytes to CNS diseases, repair, and ageing. It is 214 

also unclear whether fixed categories of reactive astrocytes exist, and if so, how to identify them. 215 

We point out the shortcomings of binary divisions of reactive astrocytes into good/bad, 216 

neurotoxic/neuroprotective or A1/A2. We advocate, instead, that research on reactive astrocytes 217 

include assessment of multiple molecular and functional parameters, preferably in vivo, 218 

multivariate statistics, and determination of impact on pathological hallmarks in relevant models. 219 

These guidelines may spur the discovery of astrocyte-based biomarkers, and astrocyte-targeting 220 

therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glio-221 

protective actions, and restore or augment their homeostatic, modulatory, and defensive functions. 222 

223 
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1. Introduction 224 

 225 

‘Neuroglia’ or ‘glia’ are collective terms describing cells of neuroepithelial 226 

(oligodendrocytes, astrocytes, oligodendrocyte progenitor cells, ependymal cells), neural crest 227 

(peripheral glia), and myeloid (microglia) origin. Changes in neuroglia associated with diseases of 228 

the central nervous system (CNS) have been noted, characterised, and conceptualised from the very 229 

dawn of neuroglial research. Rudolf Virchow, in a lecture to students and medical doctors in 1858, 230 

stressed that “this very interstitial  tissue [i.e. neuroglia] of the brain and spinal marrow is one of 231 

the most frequent seats of morbid change...”.1 Changes in the shape, size, or number of glial cells 232 

in various pathological contexts have been frequently described by prominent neuroanatomists.2 In 233 

particular, hypertrophy of astrocytes was recognised very early as an almost universal sign of CNS 234 

pathology;3 “The protoplasmic glia elements  [i.e. astrocytes] are really the elements which exhibit 235 

a morbid hypertrophy in pathological conditions”.3 Neuroglial proliferation was thought to 236 

accompany CNS lesions, leading to early suggestions that proliferating glia fully replaced damaged 237 

neuronal elements.4 Thus, a historical consensus was formed that changes in “the appearance of 238 

neuroglia serves as a delicate indicator of the action of noxious influences upon the central nervous 239 

system”, and the concept of “reactionary change or gliosis” was accepted.5 While the origin of 240 

“gliosis” is unclear (“glia + osis” in Greek means “glial condition or process”; in Latin the suffix 241 

“-osis” acquired the additional meaning of “disease”; hence astrogliosis may also carry a 242 

connotation of “glial disorder”), the term became universally adopted to denote astrocytic 243 

remodelling in response to pathologic conditions. The role of reactive astrocytes in forming a scar-244 

border to seal the nervous tissue against penetrating lesions was recognised, with distinct stages 245 

being visualised.5 In the 21st century, astrocytes are increasingly viewed as having a critical 246 

contribution to neurological disorders. Research into the roles of astrocytes in neurology and 247 

psychiatry is accelerating and drawing in increasing numbers of researchers. This rapid expansion 248 

has exposed a pressing need for unifying nomenclature and refining of concepts.6 Here, we start by 249 

providing a working consensus on nomenclature and definitions, and by critically evaluating 250 

widely used markers of reactive astrocytes. Then, we describe the advances, and we take position 251 

on controversies, regarding the impact of astrocytes in CNS diseases and ageing. Finally, we 252 

discuss the need for new names to grasp astrocyte heterogeneity, and we outline a systematic 253 

approach to unravelling the contribution of astrocytes to disorders of the CNS. This article is 254 

expected to inform clinical thinking and research on astrocytes, and to promote the development 255 

of astrocyte-based biomarkers and therapies. 256 

 257 

 258 

2. Too many names 259 

 260 

“Astrocytosis”, “astrogliosis”, “reactive gliosis”, “astrocyte activation”, “astrocyte reactivity”, 261 

“astrocyte re-activation”, and “astrocyte reaction” have been all used to describe astrocyte 262 

responses to abnormal events in the CNS, including neurodegenerative and demyelinating diseases, 263 

epilepsy, trauma, ischemia, infection, and cancer. We suggest “reactive astrogliosis” to define the 264 

process whereby, in response to pathology, astrocytes engage in molecularly defined programs 265 

involving changes in transcriptional regulation, as well as biochemical, morphological, metabolic, 266 

and physiological remodelling, which ultimately result in gain of new function(s) or loss or 267 

upregulation of homeostatic ones. Although for some researchers, particularly neuropathologists, 268 

“reactive astrogliosis” is invariably associated with irreversible changes such as astrocyte 269 

proliferation, scar-border formation, and immune-cell recruitment,6 these phenomena mainly occur 270 

when there is disruption of the blood-brain barrier (Fig. 1a).7 We also support the term “astrocyte 271 

reactivity” as being broadly equivalent to “reactive astrogliosis”, but emphasizing the capacity of 272 

astrocytes to adopt distinct state(s) in response to diverse pathologies. Therefore, “reactive 273 

astrocytes”, referring to the cells undergoing this remodelling, is an umbrella term encompassing 274 
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multiple potential states. We define “state” as a transient or long-lasting astrocyte condition 275 

characterized by a specific molecular profile, functions, and distinct impact on diseases, while its 276 

“phenotype” is the measurable outcome of that state. Importantly, the changes in astrocytes in 277 

response to pathological stimuli are not to be confused with the plasticity of healthy astrocytes, 278 

which are constantly being activated by physiological signals in the CNS. For this reason, although 279 

transitions from physiology to pathology are progressive and sometimes difficult to define, 280 

“astrocyte activation” should be reserved for physiological conditions and not used in pathological 281 

contexts, which should be referred to as “astrocyte reactivity”. 282 

 283 

The pathological contexts in which astrocyte reactivity occurs can markedly vary, and may be 284 

sporadic or genetically mediated, acute or chronic, due to a systemic pathology (e.g., sepsis), 285 

specific injury or disease of the CNS, or a deleterious experimental manipulation. By definition, 286 

astrocyte reactivity is secondary to an extrinsic signal, may evolve with time, and, in many 287 

situations, is reversible. Astrocytes may also exhibit cell-autonomous disturbances,8 as happens in 288 

astrocytopathies resulting from mutated alleles of astrocytic genes (e.g. GFAP in Alexander 289 

disease),9 as well as from direct viral infections or exposure to toxic substances that specifically 290 

damage astrocytes (e.g., ammonium in hepatic encephalopathy).10 These astrocytes can be 291 

considered “diseased astrocytes” that unequivocally initiate the diseases and may secondarily 292 

acquire a reactive phenotype with a distinct impact on disease progression. Mutations in 293 

ubiquitously-expressed genes, as in familial neurodegenerative disorders (e.g. Huntington’s 294 

disease, HD), or disease-risk polymorphisms in genes highly expressed in astrocytes (e.g., APOE 295 

in Alzheimer’s disease, AD),11 may also lead to dysfunctional astrocytes that, without being the 296 

sole or primary initiators of pathology, may adversely affect outcomes. Terminology 297 

recommendations and caveats are summarized in Box 1 and in section 7, below. 298 

 299 

 300 

3. GFAP as a marker 301 

 302 

Glial fibrillary acidic protein (GFAP)—a major protein constituent of astrocyte intermediate 303 

filaments—is the most widely used marker of reactive astrocytes (Table 1).12 Indeed, up-regulation 304 

of GFAP mRNA and protein, as shown with multiple techniques including quantitative PCR 305 

(qPCR), RNA sequencing (RNAseq), in situ hybridization, electron microscopy, and 306 

immunostaining (Fig. 1a, d), is a prominent feature of many, but not necessarily all, reactive 307 

astrocytes: (i) increased GFAP content occurs across diverse types of CNS disorders, (ii) is an early 308 

response to injury, and, moreover (iii) is a sensitive indicator, detectable even in the absence of 309 

overt neuronal death (e.g., when there is synapse loss, minor demyelination, and extracellular 310 

amyloid-β oligomers). However, while the degree of GFAP up-regulation in reactive astrocytes 311 

often parallels the severity of the injury,6 this correlation is not always proportional, perhaps due 312 

to regional differences of astrocytes, including basal GFAP content.13, 14 In the healthy mouse brain, 313 

hippocampal astrocytes have a higher GFAP content than cortical, thalamic, or striatal astrocytes; 314 

this, however, does not make hippocampal astrocytes more reactive. GFAP is also expressed by 315 

progenitor cells15 and its expression depends on developmental stages.16, 17 In addition, GFAP 316 

immunoreactivity has been reported to decrease in a subpopulation of astrocytes in mouse cortex 317 

following repetitive trauma,6 and in the spinal cord of a mouse model of amyotrophic lateral 318 

sclerosis (ALS), probably due to cleavage of GFAP by caspase 3.18 Expression of GFAP is also 319 

modulated by physiological stimuli such as physical activity,19 exposure to enriched 320 

environments,19 and glucocorticoids,20 and it fluctuates with circadian rhythms in the 321 

suprachiasmatic nucleus.21 Therefore, changes in GFAP expression may also reflect physiological 322 

adaptive plasticity rather than being simply a reactive response to pathological stimuli. A common 323 

mistake is to interpret higher numbers of GFAP-positive cells as local recruitment or proliferation 324 

of astrocytes. We recommend to use markers of proliferation (Ki67, PCNA and BrdU 325 
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incorporation, Table 2), and to combine GFAP immunostaining with other ubiquitous astrocyte 326 

markers such as aldehyde dehydrogenase 1 L1 (ALDH1L1), glutamine synthetase (GS), and 327 

aldolase C (ALDOC) to correctly estimate astrocyte numbers,22 provided that their expression is 328 

stable. Finally, there are discrepancies between observed mRNA and protein levels, perhaps due to 329 

differential regulation of translation, post-translational modifications, protein half-life, and 330 

antibody epitope accessibility. Overall, although an increase in GFAP content is a strong indication 331 

of reactive-astrocyte remodelling, it is not an absolute marker of reactivity, nor does it strictly 332 

correlate with the extent thereof, or indicate altered functions of reactive astrocytes.  333 

  334 

 335 

4. Morphology revisited 336 

 337 

Increased GFAP immunoreactivity largely reflects changes in the astrocytic cytoskeleton and tends 338 

to exaggerate the degree of hypertrophy, because, with the exception of scar-border astrocytes, the 339 

volume accessed by reactive astrocytes does not change, since they remain in their territorial 340 

domains.23 In other words, cytoskeletal reorganization does not necessarily equal astrocyte 341 

hypertrophy. Immunohistochemical staining for cytosolic enzymes such as ALDH1L1, ALDOC, 342 

GS, and S100B allow the visualization of the somata and proximal processes of astrocytes, 343 

although, like GFAP, these markers fail to reveal small processes. Membrane proteins such as the 344 

glutamate transporters EAAT1 and 2 are not optimal to assess complex astrocyte morphology, as 345 

they tend to produce widespread and diffuse staining.24 In addition, the expression of some of these 346 

proteins may change in reactive astrocytes (22, Table 1) and some might be expressed by other cell 347 

types in specific brain regions.13 Animal models expressing fluorescent proteins in the astrocyte 348 

cytosol or membrane through astrocyte-specific transgenesis, or gene transfer with viral vectors,25 349 

circumvent the limitations of immunohistochemical analysis. Further, dye-filling methods can be 350 

used to visualize whole astrocytes in mice23, as well as in human brain samples from surgical 351 

resections (Fig. 1b).24 Thorough visualisation is necessary because astrocytes undergo distinct 352 

morphological changes other than hypertrophy in pathological contexts, including elongation, 353 

process extension towards injury site, and some 3D domain overlap.26 In addition, although 354 

astrocytes appear to be more resistant than neurons to degeneration and death, loss of primary and 355 

secondary astrocyte branches has been reported in mouse models of AD27 and ALS,18 and in 356 

patients with multiple sclerosis (MS).28 Detailed analyses of astrocyte arborization in CNS diseases 357 

and injuries are however pending, given that the fine perisynaptic and perivascular astrocytic 358 

processes can only be revealed with super-resolution, expansion, or electron microscopy. Finally, 359 

clasmatodendrosis (From Greek “klasma”, fragment + “dendron”, tree + “osis”, condition or 360 

process) is a form of astrodegeneration characterized by an extreme fragmentation or beading and 361 

disappearance of distal fine processes, along with swelling and vacuolation of the cell body. It is 362 

observed in neuropathological specimens after severe trauma and ischemia, and in the aged brain.29 363 

However, although astrocytes may suffer plasma membrane disruption due to mechanical damage 364 

and cleavage of membrane proteins and cytoskeletal proteins including GFAP by proteases in acute 365 

brain trauma,30, 31 the phenomenon of clasmatodendrosis should be approached with caution, 366 

because it may be an artefact derived from post-mortem autolysis with no pathophysiological 367 

bearing, as suggested by Cajal.32 In summary, GFAP upregulation and hypertrophy are useful, but 368 

insufficient markers of astrocyte reactivity that need to be complemented by additional markers 369 

(Table 1, Box 1).   370 

 371 

 372 

5. Impact in CNS diseases 373 

 374 

Research on astrocytes in CNS diseases has advanced in the last century in line with conceptual 375 

and technological progress in astrocyte biology. New approaches have been progressively 376 
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integrated with existing ones and these continue to evolve. At present, research in reactive 377 

astrocytes is an interdisciplinary endeavour combining -omics approaches with physiology and 378 

genetic manipulation. Below, we summarize advances and controversies with regards to the impact 379 

of astrocytes in CNS diseases from a historical perspective, punctuated by technical advances.   380 

 381 

From morphology to functional studies 382 

 383 

From the early 20th century up to the 1980s, the morphological appearance of astrocytes was the 384 

only readout of their role in neuropathology. Hypertrophy and increased GFAP content were 385 

generally regarded as reflections of a detrimental astrocyte phenotype. The advent of genetic 386 

engineering in the early 1990s opened a new phase of research based on astrocyte-targeted 387 

manipulation of gene expression. For example, depletion or over-expression of receptors, 388 

membrane proteins,33, 34 cytoskeleton proteins,35 acute-phase proteins,36 heat-shock proteins,37 and 389 

transcription factors38-40 in astrocytes or ablation of proliferative scar-border forming astrocytes,41 390 

was reported to modify (protect or exacerbate) the course of neurological diseases in mouse 391 

models. An important conclusion drawn from these studies is that the morphological appearance 392 

of astrocytes does not correlate with functional phenotypes, or with their impact on other cell types. 393 

Moreover, the overall impact of reactive astrocytes on each disease is complex. For example, the 394 

manipulation of reactive astrocytes has resulted in improved,38, 42, 43 worsen35 outcomes, and no 395 

change44 in mouse models of AD and MS.40, 45, 46 Plausibly, such differences arise from several 396 

scenarios: (i) pathways that ultimately exacerbate, attenuate, or have no impact on ongoing 397 

pathology occur in the same astrocyte, such that the selective manipulation of one pathway may 398 

mask, or secondarily impact, the manifestation of others, (ii) coexisting astrocyte subpopulations 399 

may have opposing effects on pathology,45 (iii) in neurodegenerative diseases, a spectrum of 400 

reactive-astrocyte phenotypes conceivably coexist in the same brain at a given time point because 401 

of the asynchronous progression of neuropathology in different brain regions, (iv) the pathological 402 

impact of astrocytes is stage-dependent, as shown in mouse models of MS.40, 45, 46 Finally, pathways 403 

inducing astrocyte reactivity may be beneficial in one disease and detrimental in another. For 404 

example, activation of STAT3-dependent transcription is beneficial in neonatal white matter 405 

injury,47 traumatic brain injury,30, spinal cord injury,48, 49 and motor neuron injury50 but detrimental 406 

in AD models.42, 43 That is, STAT3-mediated transcriptional programs may contribute to 407 

malfunctional astrocyte states in AD models, and to resilient states in other conditions. We broadly 408 

define astrocyte resilience as the set of successful astroprotective responses that maintain cell-409 

intrinsic homeostatic functions in neural circuits (Table 2), while promoting both neuronal and 410 

astrocyte survival. Lastly, responses of reactive astrocytes may be maladaptive and result in 411 

malfunctional astrocytes, which, in addition to losing homeostatic functions, may also gain 412 

detrimental functions, thus exacerbating ongoing pathology.6 Numerous mixed scenarios of 413 

malfunctional and resilient astrocytes plausibly exist, with multidirectional transitions among 414 

them. 415 

Research in the last decade has begun to unravel specific functional alterations in reactive 416 

astrocytes underlying complex phenotypic changes. In normal conditions, astrocyte  Ca2+-based 417 

responses, and downstream signalling via neuroactive mediators, exert multifarious effects on 418 

synaptic function and plasticity, neural-network oscillations, and, ultimately, on behaviour.51, 52 In 419 

pathology, various functional changes emerge. Astrocyte Ca2+ dynamics and network responses 420 

become aberrant in mouse models of HD,53 AD,54 and ALS,55 possibly contributing to cognitive 421 

impairment and neuropathology.43, 53, 56 Reactive microglia may shift astrocyte signalling from 422 

physiological to pathological by increasing production of tumour necrosis factor α, thus altering 423 

synaptic functions and behaviour.57 Functions lost or altered in reactive astrocytes include 424 

neurotransmitter and ion buffering in mouse HD models,58 communication via gap junctions in the 425 

sclerotic hippocampus of epileptic patients,59 phagocytic clearance of dystrophic neurites,60 and 426 
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metabolic coupling by glycolysis-derived D-serine61 and lactate62 in mouse AD models. The 427 

excessive release of GABA by reactive astrocytes in AD63 and Parkinson’s disease64  may be a case 428 

of gain of detrimental function. Another example may be the so-called astrocyte neurotoxicity, but 429 

we recommend using this term only when increased neuronal death is due to the verified release of 430 

an identified toxic factor by reactive astrocytes, and not merely due to loss of trophic or antioxidant 431 

support from astrocytes. An example is neuronal damage due to nitrosative stress caused by 432 

astrocyte-derived nitric oxide in MS.33 Finally, a classical gain of beneficial function is the 433 

restriction of immune cell infiltration in open injuries by scar-border forming reactive astrocytes.7  434 

Transcriptomics and A1/A2 classification 435 

 436 

Transcriptomics has contributed to a fundamental discovery: astrocytes in the healthy brain are 437 

diverse and specialized to perform specific roles in distinct CNS circuits.14, 65 Astrocyte diversity 438 

in healthy tissue arises from embryonic patterning programs or local neuronal cues.14 Likewise, 439 

reactive astrocytes are also diverse, as unequivocally demonstrated by microarray-based66-68 and 440 

RNAseq-based48, 69-71 transcriptomic profiling of mouse bulk astrocytes,48, 66-70 or of astrocyte 441 

populations pre-selected according to cell-surface markers.71 Such transcriptomic profiling 442 

specifically shows that reactive astrocytes adopt distinct molecular states in different disease 443 

models,48, 66-70 CNS regions,70 and in brain tumours.71 These studies also suggested complex 444 

functional changes in reactive astrocytes, including novel regenerative functions,70 proliferation, 445 

and neural stem cell potential,68 as well as loss of homeostatic functions.66 They have also identified 446 

drug candidates to establish the impact of altered astrocytic pathways in mouse models.68, 70 447 

Whether baseline astrocyte heterogeneity influences astrocyte reactivity is an outstanding question. 448 

 449 

In one early transcriptome study66 and its follow-up,72 it was proposed that mouse astrocytes 450 

adopted an “A1” neurotoxic phenotype after exposure to specific cytokines secreted by microglia 451 

exposed to lipopolysaccharide (LPS), whereas they acquire an “A2” neuroprotective phenotype 452 

after ischemic stroke―two acute pathological conditions. Two correlative signatures of 12 genes 453 

with 14 pan reactive genes were proposed as fingerprints identifying these phenotypes and, for A1 454 

astrocytes, combined with thorough functional analyses in vitro.72 Although the A1 and A2 455 

phenotypes were not proposed to be universal or all-encompassing, they became widely 456 

misinterpreted as evidence for a binary polarization of reactive astrocytes in either “neurotoxic” or 457 

neuroprotective states, which could be readily identified in any CNS disease, acute or chronic, by 458 

their correlative marker genes in a manner similar to the once popular, but now discarded, 459 

“Th1/Th2 lymphocyte and “M1/M2” microglia polarization theories.73 For multiple reasons, we 460 

now collectively recommend moving beyond the “A1/A2” labels and the misuse of their marker 461 

genes. Importantly, only a subset, often a mix of “A1” and “A2” or pan-reactive transcripts, are 462 

upregulated in astrocytes from human HD74 and AD75, 76  brains, or from several mouse models of 463 

acute injuries and chronic diseases of the CNS.42, 69, 76, 77 Moreover, the functions of these genes are 464 

not known, for, to date, no experimental evidence has causally linked any of the proposed marker 465 

genes of “A1” or “A2” astrocytes to either “toxic” or “protective” functions. Thus, the mere 466 

expression of some, or even all these marker genes, does not prove the presence of functions that 467 

these genes have not been demonstrated to exert. Specifically, complement factor 3 (C3) should 468 

not be regarded as a single and definitive marker that unequivocally labels astrocytes with a net 469 

detrimental effect. In addition, steadily increasing evidence indicates that any binary polarization 470 

of reactive astrocytes falls short of capturing their phenotypic diversity across disorders. For 471 

example, single cell/nucleus RNAseq (sc/snRNAseq) studies in mouse models and human brains 472 

of chronic neurodegenerative diseases have unravelled numerous stage-dependent transcriptomic 473 

states in  HD,74 AD,75, 78 and MS40, that do not clearly comply with A1/A2 profiles. In addition, 474 

advanced statistics using multi-dimensional data and co-clustering approaches reveals that the 475 

“A1” and “A2” transcriptomes represent only two out of many potential astrocyte transcriptomes 476 
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segregating along several latent variables.79 The analyses also indicate that multidimensional data 477 

are necessary to establish the distinctiveness of astrocyte phenotypes (Fig. 2). Characterization of 478 

the potentially extensive and subtle functional diversity of reactive astrocytes suggested by 479 

transcriptomic data is an important future goal. 480 

 481 

Human stem cells  482 

 483 

Advances in human induced pluripotent stem cell (hiPSC) technology are being adapted to 484 

astrocyte research. Interestingly, astrocytes generated from hiPSC derived from fibroblasts 485 

obtained from patients with CNS diseases (usually with a genetic mutation causative of disease or 486 

a risk polymorphism) show pathological phenotypes, including dysregulation of lipid 487 

metabolism,11 alteration in the contents of the extracellular vesicles released by astrocytes,80 488 

reduced autophagy, 81 or altered STAT3 signalling.82 hiPSC-derived astrocytes are also amenable 489 

to study responses to viral infection83 and to specific stimuli.84 Nevertheless, caution is in order, 490 

for more research is needed to establish hiPSC-derived astrocytes as bona fide models of human 491 

astrocytes and to determine whether they recapitulate the maturity as well as the temporal, regional, 492 

and subject heterogeneity of in vivo astrocytes. Importantly, not only are these cells removed from 493 

their original milieu, but the serum pervasively used in culture media may render them reactive.84 494 

In addition, generation of astrocytes from neural stem cells is inherently difficult, and derivation 495 

and culture conditions have not yet been standardized, leading to diversity of clone phenotypes. 496 

Finally, ageing-related neurodegenerative diseases should be modelled with astrocytes derived 497 

from cells from aged subjects, but, in this case, the epigenetic rejuvenation intrinsic to the 498 

reprogramming of adult cells arises as a confounding factor to be controlled for. 499 

 500 

 501 

6. Are ageing astrocytes reactive or senescent?  502 

 503 

Healthy brain ageing is not pathological and may be defined as an adaptive evolution of global cell 504 

physiology over time.85 Aged human brains display only mild and heterogeneous changes in 505 

astrocyte morphology or GFAP levels.86 Studies in rodents document region-dependent, often 506 

contradictory changes in ageing astrocytes, such as an increase in cellular volume and overlap of 507 

astrocyte processes, but also atrophy, increase in GFAP content, or even a reduction in the number 508 

of GFAP and GS-positive astrocytes.87-89 Notably, ageing is also associated with pronounced 509 

regional differences in astrocyte gene expression in mouse brains.90, 91 However, only a few studies 510 

have directly assessed astrocyte functions in the ageing mouse brain.85, 92 Thus, although the data 511 

suggest complex changes in ageing astrocytes, the evidence is not yet sufficient to qualify 512 

astrocytes as being bona fide reactive during physiological ageing. Nonetheless, with advanced 513 

age, cumulative exposure to pathological stimuli may render some astrocytes reactive. To test this 514 

hypothesis, a systematic investigation of the molecular properties of ageing astrocytes across 515 

different CNS regions in humans, and comparison of physiologically aged and reactive astrocytes 516 

in various pathological conditions, is needed, together with functional validations in mouse models. 517 

Finally, we suggest caution about extending the concept of senescence to astrocytes based upon 518 

the expression of cell senescence markers p16INK4A, increased β-galactosidase activity, and 519 

secretion of cytokines,93 because the core definition of senescence (i.e., irreversible cell-cycle arrest 520 

in proliferative cells) may not apply to astrocytes, which are essentially post-mitotic cells that rarely 521 

divide in healthy tissue. Molecular and functional profiling of putative senescent astrocytes in 522 

different diseases is needed to clarify the meaning of p16INK4A expression in post-mitotic astrocytes, 523 

as well as the interplay between senescence-like features, reactivity, and ageing in astrocytes.   524 

 525 

 526 

7. Are new names needed?  527 
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 528 

Arguably, new names are needed to capture the variety of reactive astrocytes, but current 529 

knowledge does not yet allow the objective categorizing of reactive astrocytes. Indeed, the 530 

existence of fixed categories defined by molecular and functional features consistently observed in 531 

different disease contexts is not yet certain. Nonetheless, two new names have recently been coined 532 

to describe the extremes of six astrocytic transcriptional clusters detected by snRNAseq in the 533 

hippocampus of AD transgenic and wild-type mice.78 In this study, “homeostatic astrocytes” were 534 

predominant in healthy mice, whereas “disease-associated astrocytes” were unique to AD mice. 535 

We do not support generalization of this “disease-associated” classification to other conditions 536 

because only one disease was studied. In addition, the term “homeostatic astrocytes” implies the 537 

unproven assumption that other transcriptional astrocyte clusters are dyshomeostatic, while they 538 

may be successful homeostasis-preserving adaptations to disease.  539 

 540 

We stress that the expression in full or in part of a pre-determined correlative signature of molecular 541 

markers is not, on its own, sufficient to define a functional phenotype of reactive astrocyte. In 542 

addition, vague and binary terms such as “neuroprotective” or “neurotoxic” are best avoided in 543 

describing astrocyte phenotypes as they are too simplistic to be meaningful, unless they are 544 

supported by specific molecular mechanisms, and direct causative experimental evidence. Future 545 

classification of reactive astrocytes should, instead, consider multiple criteria including 546 

transcriptome, proteome, morphology, and specific cellular functions (Table 2), together with 547 

demonstrated impact on pathological hallmarks (Fig. 2).  548 

 549 

For now, we recommend “reactive astrocytes” as the general term for astrocytes observed in 550 

pathological conditions (Box 1). The term “injured/wounded astrocytes” should be reserved for 551 

astrocytes with unequivocal morphological signs of damage (e.g., beaded processes), as observed 552 

in ischemia and trauma.30, 31 Descriptions based on misleading generalizations of functional 553 

changes and over-interpretation of correlative data should be avoided. We call for a clear 554 

operational terminology that includes information about morphology (e.g. hypertrophic, atrophic), 555 

molecular markers (Table 1), functional readouts (Table 2), as well as brain region, disease, disease 556 

stage, sex, species, and any other relevant source of heterogeneity (Fig. 2). Indeed, the goal is to 557 

go beyond the mere categorization of reactive astrocytes, and identify the key variables driving 558 

specific reactive astrocyte states, phenotypes, and functions in specific contexts. When addressing 559 

similar issues for neurons, scientists are not concerned about categorizing disease-associated 560 

neurons into simple generalizable subtypes; rather, the emphasis is placed on understanding 561 

specific changes of defined neuronal populations in specific diseases. This principle should also 562 

apply to astrocytes. 563 

 564 

 565 

8. Towards astrocyte-targeting therapies 566 

 567 

One goal of research on reactive astrocytes is to develop astrocyte-targeting therapies for CNS 568 

diseases. Two challenges preclude translating the wealth of functional and molecular data 569 

described in the previous sections into therapies. First, there is a need to unequivocally clarify 570 

whether or not reactive astrocytes and their associated signalling pathways significantly contribute 571 

to the pathogenesis of specific CNS diseases. The approach should be reciprocal, such that human 572 

data inform experimental manipulations in animal models, and animal data are validated in human 573 

materials. The second challenge is to develop astrocyte therapies tailored to specific disease 574 

contexts. Specific research directions include: 575 

 576 

Heterogeneity characterization 577 

 578 
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To define astrocyte phenotypes, all sources of heterogeneity should be considered and integrated 579 

with multidimensional statistical analyses (Fig. 2). ScRNAseq and snRNAseq are becoming 580 

established as valuable tools to gain insight into basal94 and reactive-astrocyte heterogeneity (Fig. 581 

1e).40, 78, 95 Notably, isolation protocols may not always be optimal for astrocytes, resulting in low 582 

numbers of cells or nuclei being sequenced, and some highly relevant but weakly-expressed 583 

transcripts such as transcription factors and plasma-membrane receptors being overlooked, 584 

particularly in snRNAseq. Translation from sc/snRNAseq data to in situ immunohistochemical 585 

detection and functional validations is far from trivial, because the molecular profiles of astrocyte 586 

clusters/subpopulations partly overlap. Thus, instead of individual markers, signatures composed 587 

of a combination of markers with specified levels of expression or relative fold-changes are 588 

required to identify astrocyte phenotypes.74 Such signatures must be statistically validated to the 589 

point of predicting phenotypes. Alternatively, the diversity within astrocyte populations from 590 

mouse models may be dissected out by combining FACS and cell-surface markers identified in 591 

screens.71 Further, emerging spatial transcriptomics that allow the simultaneous in situ detection of 592 

numerous genes will be of value to study the heterogeneity of reactive astrocytes at local and 593 

topographical levels (Fig. 1f).96 Importantly, molecular signatures based on the expression of genes 594 

or proteins need to be validated by assessing specific astrocyte functions (Table 2), since post-595 

transcriptional and post-translational events critically shape functional outcomes. Functional 596 

validations should preferably be performed in vivo, or with in vitro models closely mimicking 597 

human diseases. Classical knockout-, knockdown-, or CRISPR-based approaches to inactivate 598 

gene expression are available to gain insight into the impact on disease of a given pathway within 599 

previously identified astrocyte subsets.40  600 

 601 

Signalling 602 

 603 

An important implication of the disease-specific induction of distinct reactive astrocyte states is 604 

that the damage- and pathogen-associated stimuli from one disorder cannot be assumed to be active 605 

in another. For example, the now widely-used cocktail of factors released by LPS-treated neonatal 606 

microglia72 cannot be simply assumed to model reactive astrocytes in diseases other than neonatal 607 

septic shock due to infection by gram-negative bacteria. Likewise, exposure to Tau, amyloid β or 608 

α-synuclein needs to be carefully designed in vivo and in vitro to replicate the concentration, protein 609 

species and combinations thereof found in patient brains. Acute metabolic damage with the 610 

mitochondrial toxin MPTP does not replicate chronic PD, to cite another example of in vivo 611 

inappropriate modelling. To complicate things further, the outcome of activating a signalling 612 

pathway may depend on the upstream stimuli82 or priming caused by previous exposure to other 613 

stimuli,97 perhaps through epigenetic control.40 Thus, careful selection of upstream stimuli is 614 

essential for appropriate in vivo and in vitro modelling of disease-specific reactive astrocytes. 615 

Finally, interventional strategies such as classical pharmacology,56, 98 genetic manipulation,42, 56 616 

and biomaterials99 are available tools to modify pathological signalling in reactive astrocytes for 617 

therapeutic purposes. Optogenetics25 and Designer Receptor Exclusively Activated by Designer 618 

Drugs (DREADD)25 are potential tools to manipulate reactive astrocytes, or restore their aberrant 619 

Ca2+ signalling observed in mouse models of neurodegenerative diseases.53-55 However, it is 620 

unknown whether, and how, the changes in Na+/K+/Cl-/Ca2+ fluxes and second messengers 621 

triggered by these approaches25 modulate signalling cascades driving phenotypical changes of 622 

reactive astrocytes (e.g., JAK-STAT and NF-κB pathways).6 623 

 624 

Humanizing research  625 

 626 

Although some basic functional properties of astrocytes have been shown to be evolutionarily 627 

conserved between humans and rodents,100 it is still critical to study patient samples and develop 628 

models of human reactive astrocytes because morphological and transcriptomic comparisons have 629 
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revealed prominent differences between mice and humans.101-103 In addition to astrocytes from 630 

post-mortem samples and biopsies (59, Fig. 1b), hiPSC-derived astrocytes, which can be generated 631 

with a fast protocol in 2D layers,104
 or integrated in 3D systems such as spheroids and organoids,105-

632 

108
 are rapidly becoming commonplace in basic research11, 82 and therapy development.109 633 

Researchers need to be aware of the pros and cons of the various protocols available, as discussed 634 

in previous sections and elsewhere.110-112 Also, hiPSC glial mouse chimeric brains, in which hiPSC 635 

differentiate into human astrocytes, oligodendrocytes, and their progenitors, offer the possibility to 636 

study human astrocytes from patients in contexts amenable to in vivo experimentation.113, 114 In 637 

addition, proteins released by injured astrocytes are currently being considered as fluid biomarkers 638 

of neurotrauma.31 Biomarkers of reactive astrocytes in human disease will be indeed needed to 639 

demonstrate target engagement of future astrocyte-directed therapies in clinical trials. Emerging 640 

reactive-astrocyte biomarkers are either measured in blood or cerebrospinal fluid (e.g. YKL-40),115 641 

or used for brain imaging such as MAO-B-based positron emission tomography (PET),116 which 642 

provides important topographical information (Table 1).117 Plausibly, disease-specific biomarker 643 

signatures rather than single ubiquitous biomarkers will be needed. 644 

 645 

Use of systems biology 646 

 647 

Computerised tools including systems biology and artificial intelligence are essential to organizing 648 

and interpreting the increasing wealth of high-throughput multidimensional molecular and 649 

functional data from reactive astrocytes. Currently, molecular data (e.g., -omics) can be 650 

transformed into mathematical maps by artificial intelligence,118 thereby providing quantitative 651 

representations of the otherwise vague notion of phenotypes. An example of functional data is 2D 652 

and 3D Ca2+ imaging that generates kinetic profiles and maps for single astrocytes and 2D/3D 653 

networks (Fig. 1c).119, 120 Artificial intelligence can identify patterns of Ca2+ signalling in 654 

astrocytes.55, 120 Multidimensional molecular and functional data have then two applications. First, 655 

multivariate analysis may unravel molecules, pathways and variables shaping astrocyte phenotypes 656 

in acute versus chronic degenerative conditions, different disease stages, sexes, and CNS regions 657 

(Fig. 2). Second, these data can be used to predict the net functional outcome of a complex mix of 658 

potentially protective or deleterious pathways, and identification of hubs such as master 659 

transcription factors or epigenetic regulators that, when activated, promote globally beneficial 660 

transformations. Importantly, the inhibition of detrimental pathways must not secondarily impair 661 

protective ones, or damage basic astrocyte functions. Finally, no astrocyte-targeting therapy can be 662 

successful if it does not consider the complex interactions of reactive astrocytes with other CNS 663 

cells. 664 

 665 

 666 

9. Concluding remarks 667 

 668 

The dawn of neuropathology in the late 19th and early 20th centuries witnessed widespread interest 669 

in neuroglia. Today, research on astrocytes and their remodelling in the context of injury, disease, 670 

and infection is undergoing a renaissance, with new researchers bringing exciting new techniques, 671 

approaches, and hypotheses. Given the scarcity of disease-modifying treatments for chronic 672 

diseases and acute injuries of the CNS, this astrocyte revival represents an opportunity to develop 673 

largely unexplored therapeutic niches such as the manipulation of reactive astrocytes. However, 674 

despite the substantial body of knowledge accumulated since the discovery of reactive astrocytes 675 

a century ago, there are no therapies purposely designed against astrocyte-specific targets in clinical 676 

practice. The present working consensus for research guidelines will hopefully boost more 677 

coordinated and better focused efforts to improve, and therapeutically exploit, our knowledge about 678 

the role(s) of reactive astrocytes in CNS diseases and injuries. 679 

  680 
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Figure legends 1071 

Figure 1. Multivariate assessment of reactive astrocytes  1072 

a. Reactive astrocyte proliferation in the vicinity of blood vessels assessed by co-staining for BrdU 1073 

(green, arrows), DAPI (blue), GFAP (white), and CD31 (red) after stab injury of the mouse cortex. 1074 

Bar size: 15 µm. Unpublished image from Drs. Sirko and Götz.  1075 

b. Human cortical protoplasmic astrocytes in a surgical specimen injected with Lucifer yellow 1076 

(arrow, injection site) that traverses the gap junctions into neighbouring astrocytes. Bar size: 45 1077 

µm. Courtesy of Drs. Xu, Sosunov, and McKhann, Columbia University Department of 1078 

Neurosurgery.  1079 

c. Event-based determination of Ca2+ responses in a GCaMP6-expressing astrocyte (surrounded by 1080 

a dashed line) in mouse cortical slices using Astrocyte QUantitative Analysis (AQuA).120 Colours 1081 

indicate AQuA events occurring in a single 1-sec frame of a 5-min movie. Bar size: 10 µm.  1082 

d. Activation of the transcription factor STAT3 (green) assessed by nuclear accumulation in 1083 

GFAP+ reactive astrocytes (red) surrounding an amyloid plaque (blue, arrow) in a mouse AD 1084 

model. Bar size: 20 µm. Adapted from 121.  1085 

e. ScRNAseq in the remission phase of a mouse MS model reveals several transcriptional astrocyte 1086 

clusters. These astrocyte sub-populations may be validated with spatial transcriptomics, as shown 1087 

in f in an AD model. Adapted from 40. 1088 

f. Distribution of 87 astrocytic (green), neuronal (red), microglial (yellow), and oligodendroglial 1089 

(blue) genes as shown with in situ multiplex gene sequencing in a coronal section from a mouse 1090 

AD model. The method ‘reads’ barcodes of antisense DNA probes that simultaneously target 1091 

numerous mRNAs. Bar size: 800 µm. Boxed area is magnified in bottom image, showing 6E10+ 1092 

amyloid-β plaques (white, arrows). Adapted from 96. 1093 

 1094 

 1095 

Fig. 2. Workflow for the identification of key variables shaping astrocyte reactivity using 1096 

multidimensional analyses 1097 

a. Variables to measure in individual experiments. Although at present it is unrealistic to measure 1098 

all in the same experiment, it will in most cases be possible to measure at least two or three. 1099 

b. Variables to record in individual experiments. In some experiments, all or most of these 1100 

variables are kept constant and are not compared, but they should all be recorded to allow for future 1101 

comparison across experiments and studies. 1102 

c. Individual studies will generate multidimensional datasets of reactive astrocytes that can be 1103 

organized in matrices containing all outcome measures of variables assessed in (a) (e.g. omics data, 1104 

functional measurements). One matrix may be generated for each condition listed in (b) using data 1105 

obtained in a. Determining whether such states are equivalent to fixed categories rather than 1106 

temporary changes due to the dynamic nature of cell functioning requires cross-comparison among 1107 

studies or longitudinal studies, paired with statistical analyses (d). 1108 

d. Multidimensional data analysis and clustering statistics of weighted scores from datasets (a) 1109 

across different contexts (b) represented in matrices (c) allow identification of functional vectors 1110 

(V) driving astrocyte reactivity in different contexts. A high score and a low score in each vector 1111 

represent gain and loss of function, respectively. The graph shows a hypothetical plot of simulated 1112 

multivariate datasets from (a) (each dot represents one dataset/sample) obtained in different 1113 

contexts (b), depicted in different colours. Astrocytes with shared features segregate together along 1114 

three axes according to the predominance of the function represented in each vector. A state is 1115 

defined by where the dataset(s) falls in the V1-3 space. The analysis can be n-dimensional, but for 1116 

visual clarity, we show a 3-dimensional scenario.   1117 
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Table 1. Potential markers of reactive astrocytes 

Marker  Known function Type of change Conditions observed Species Comments Ref  

Cytoskeleton 

GFAP 
Intermediate 

filament 
↑ mRNA & protein  Widespread. Not in some 

trauma models 
Widespread 

Released by injured astrocytes 
Cleavage product found in CSF/plasma                  

(neurotrauma biomarker) 

122 

Nestin 
Intermediate 

filament 
↑ mRNA & protein 

AD, AxD, MS, spinal 
cord injury, TBI  

Hu, Ms Also a marker of progenitor cells 123 

Synemin 
Intermediate 

filament 
↑ mRNA & protein 

AD, AxD, astrocytoma, 
TBI 

Hu, Ms 
Normally expressed in a subset of astrocytes during 

development 
124  

Vimentin 
Intermediate 

filament 
↑ mRNA & protein Widespread Widespread 

Also expressed by endothelial cells, vascular smooth 
muscle cells, and immature astrocytes  

125 

Metabolism 

ALDOC Glycolytic enzyme ↑ protein SCI, TBI Hu, Ms 
Released by injured astrocytes                                          

Fluid biomarker for neurotrauma 
30, 31 

BLBP/ 
FABP7 

 Lipid transport ↑ protein  AD, MS, TBI Hu, Ms 
Also a marker of immature astrocytes. Released by injured 

astrocytes. Fluid biomarker for neurotrauma 
31, 60 

MAO-B 
Catecholamine 

catabolic enzyme 
↑ protein AD, ALS, PD Hu, Ms 

PET radiotracers available                                             
Also expressed by catecholaminergic neurons 

63, 64, 117 

TSPO 
Mitochondrial lipid 

transporter 
↑ mRNA & protein AD, MS, ischemia Hu, Rt, Ms 

PET radiotracers available. Also induced in reactive 
microglia. Expressed by vascular cells 

126 

     Chaperones 

CRYAB  Chaperone activity 
↑ mRNA & 

protein, ↑ secretion 
AD, AxD, epilepsy, HD, 

MS, TBI 
Hu, Ms 

Reduces protein aggregation 
 

74, 95 

HSPB1/ 
HSP27 

Chaperone ↑ mRNA & protein 
AD, AxD, epilepsy, MS, 

tauopathies, stroke 
Widespread 95, 127  

Secreted proteins 
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C3   Complement factor ↑ mRNA & protein  
ND, prion disease, septic 

shock 
Hu, Ms Also expressed by microglia 72 

CHI3L1/ 
YKL40    

Unclear function 
↑ mRNA & protein  

↑ secretion 
Widespread Hu, Ms 

Increase in CSF is a prognostic biomarker in LOAD and 
MS 

79, 115 

Lcn2 
Iron trafficking 

protein 
↑ mRNA & protein 

AxD, MS, septic shock, 
ALS, stroke  

Widespread  66 

Serpina3n/ 
ACT 

Serine protease 
inhibitor 

↑ mRNA AD, septic shock, stroke Hu, Ms Secreted to extracellular matrix 66 

MT Metal binding ↑ mRNA & protein HD, PD, AD Hu, Ms Antioxidant effects 74 

THBS-1  Synaptogenic factor 
↑ mRNA & protein 

↑ secretion 
Axotomy, MS Hu, Ms STAT3-regulated. Has beneficial synaptogenic effects 50 

Cell signalling – Transcription factors 

NFAT  Transcription factor 
↑ mRNA, protein, 

nuclear 
translocation  

AD, TBI, PD Hu, Ms Links Ca2+ signalling with reactive transcriptional changes 38, 128 

NTRK2/ 
TrkB 
IL17R 

Receptors 
↑ mRNA and/or 

protein 
Epilepsy, MS (white 

matter) 
Hu, Ms 

Trigger non-canonical pathological BDNF-dependent 
signalling, and/or NF-κB activation and NO production 

33, 109 

S100B Ca2+ binding protein 
↑ protein and 

release 
Widespread Widespread Released upon injury. Fluid biomarker 129 

SOX9 Transcription factor 
↑ mRNA and/or 

protein 
ALS, stroke, SCI Hu, Ms 

Nuclear staining 
Also present in ependymal cells and in neurogenic niches 

130 

STAT3 Transcription factor 
Phosphorylation, 

nuclear 
translocation 

Widespread Widespread Also expressed in neurons and other cell types 49, 50, 131 

Channels - Transporters 

EAAT1 & 2 
Glutamate 
transporters 

↓ mRNA, protein 
and uptake 

ND Widespread May be also detected in some neurons 53, 132 

KIR4.1 K+ channel 
↓ mRNA  & 

protein  Widespread Hu, Ms May or may not translate into alteration of K+ buffering  58 
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Abbreviations used: AD: Alzheimer’s disease: ALS: amyotrophic lateral sclerosis; AxD: Alexander disease; BDNF: Brain-derived neurotrophic factor; CSF: 
cerebrospinal fluid; HD: Huntington’s disease; Hu: human; LOAD: late onset AD; MS: multiple sclerosis; Ms: Mouse; ND: neurodegenerative disease; NO: 
nitric oxide; PET: positron emission tomography; PD: Parkinson’s disease; Rt: rat; SCI: spinal cord injury; TBI: traumatic brain injury. 

 

This table lists potential markers for reactive astrocytes in different pathological contexts in human diseases and animal models. The list is not meant 
to be exhaustive; other markers exist and more will be added over time. These proteins can be used to further characterize the reactive state of astrocytes, 
although note that, like GFAP (see Section 3), none of these proteins should be used as a single or universal marker of reactive astrocytes, nor for the 
time being do they identify a specific type of reactive astrocyte. Plausibly, markers in the table will be part of signatures defining disease-specific or 
core markers of reactive astrocytes, as well as astrocyte-based fluid biomarkers (see Section 8). Importantly, few of these markers are astrocyte-specific; 
therefore, additional methods to identify or isolate astrocytes and remove contamination by other cell-types will be in order.  
 
  



27 

 

 

     Table 2. Potential functional assessments for reactive astrocytes 

Function/Phenomenon Potential readouts Ref 

Ca2+ signalling in single cells 
Ca2+ based network dynamics 

Ca2+ imaging with chemical or genetically-encoded Ca2+ indicators 25, 52, 55, 119, 120 

Ionic homeostasis 
Measurement of ionic currents and membrane potential (electrophysiology). Direct measurement of extracellular K+ 
levels 

58, 132 

Glutamate, GABA, 
D-serine and ATP release 

Glutamate uptake and conversion 

Detection of neuroactive factors using fluorescent sensors and in vivo two-photon imaging 
Quantification of neuroactive factors in extracellular milieu and CSF (FRET, HPLC, CE-LIF, fluorescent sensors 
like GluSnFR, enzymatic kits) 

25 

Analysis of glutamate currents (electrophysiology) and/or transporter content (immunoblot, immunostainings) 
109, 132 

Metabolism of 13C-labeled substrates (GC-MS & HPLC) 
133 

Astrocyte inter-cellular 
connectivity 

Diffusion of permeant dyes in astrocyte networks (patch-clamp & imaging), FRAP 
59 

Vascular coupling 
Maintenance of BBB integrity 

Assessment of vascular responses after Ca2+ uncaging or optogenetic stimulation of astrocytes (two-photon imaging, 
optical intrinsic imaging, MRI) 

134 

Assessment of BBB permeability with detection in the parenchyma of blood proteins or dyes (Evans blue, Dextrans) 
135 

Signalling 
Transcription factor activation 

Standard biochemical assays. Signalling manipulation by DREADDs  
Transcription factor translocation and DNA binding assays, chromatin immunoprecipitation, reporters 

25, 109, 136 

Production of synaptogenic and 
neurotrophic factors, ECM, 

cytokines, chemokines 

Synapse quantification in vivo and upon exposure to astrocyte-conditioned media in vitro 
Proteomics/metabolomics of astrocyte-conditioned media and acutely sorted astrocytes 
Multiplex ELISA assays, immunostainings 

72, 97 

Interactions with neurons, 
oligodendrocytes, OPC and 

microglia 
In vivo/ex vivo analyses, co-cultures or exposure to conditioned media and assessment of function/survival   

58, 72, 82 

Glycolysis 
Fatty-acid oxidation 
Lactate production 

Glycogen metabolism  
Mitochondrial respiration 

Metabolism of 3H/14C/13C/- labelled energy substrates (GC-MS, radioactive assays, NMR) 
133, 137 

Glucose, pyruvate, lactate and ATP quantification with genetically-encoded fluorescent sensors and in vivo two-
photon imaging 

138, 139 

Lipid-droplet and fatty-acid staining with BODIPY dyes 
140 
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 NADH imaging (FLIM) 
141 

Activities of electron transport chain complexes 
Extracellular acidification, oxygen consumption (Sea Horse, voltametry) 

141 

Quantification of glycogen granules by EM or immunostainings 
142, 143 

NO-ROS production/detoxification 
NO/ROS imaging with intra/extracellular fluorescent sensors or probes 
Immunostaining for oxidized residues 
Activity of antioxidant enzymes with commercial kits 

33, 144 

Endolysosomal system 

Detection of phagocytosed materials (array tomography, EM, 2 photon microscopy) 
Uptake of myelin debris or labelled synaptosomes 

60, 72, 145 

Autophagic flux 
81, 146 

Exosome production 
80, 147 

Proteasome/lysosome proteolytic activity (fluorescent probes) 
148 

Proliferation 
BrdU incorporation 
Ki67, PCNA, cyclin labelling (calculation of a proliferative index, i.e. % of positive cells in the population) 
Characterization of astrocyte progeny by fate mapping 

149, 150 

Scar-border formation Morphometric/functional analyses (e.g. composition, permeability to immune cells) 
131 

Abbreviations used: BBB: blood-brain barrier; BrdU: bromodeoxyuridine; CE-LIF: capillary electrophoresis with laser induced fluorescent detection, CSF: 
cerebrospinal fluid; DREADD: designer receptor exclusively activated by designer drugs. ECM: Extracellular matrix; EM: electron microscopy; FLIM: 
fluorescence lifetime imaging microscopy; FRAP: Fluorescence recovery after photobleaching. FRET: Förster resonance energy transfer; GC-MS: gas 
chromatography-mass spectrometry; HPLC: high performance liquid chromatography; NO: nitric oxide; NMR: nuclear magnetic resonance; OPC: 
oligodendrocyte progenitor cells; PCNA: proliferating cell nuclear antigen; ROS: reactive oxygen species. 

 

The table depicts assays that can be performed in astrocytes to characterize their functional properties. References and functions are not exhaustive 
and aim to illustrate the existing methodology by providing recent protocols for each approach. Although most references concern studies in healthy 
or reactive astrocytes, some additional tools relevant to reactive astrocytes are listed as well. Assays can be performed in human neurosurgical 
samples, in vivo, or in acute brain slices of animal models and/or in vitro (pure cultures, mixed cultures, organoids). Note that some assays require 
specific equipment and skills or the physical isolation of astrocytes to measure astrocyte-specific functional parameters. No reference is provided 
for enzymatic assays that are commercially available. 
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BOX 1. Basic consensus and recommendations for research on reactive astrocytes 
 
BASIC CONSENSUS 
1. Reactive astrocytes are astrocytes that undergo morphological, molecular, and functional 
changes in response to pathological situations in surrounding tissue (CNS disease/injury/ 
deleterious experimental manipulation).  
2. Astrocytes with disease-causing genetic mutations are diseased astrocytes that initiate or 
contribute to pathology, and later become reactive in ways that may differ from the astrocyte 
reactivity normally triggered by external stimuli. Genetic polymorphisms linked to CNS diseases 
may also influence astrocytic functions and prime astrocytes to acquire distinct reactive states. 
3. There is no prototypical reactive astrocyte, nor do reactive astrocytes polarize into simple 
binary phenotypes, such as good/bad, neurotoxic/neuroprotective, A1/A2, etc. Rather, reactive 
astrocytes may adopt multiple states depending on context, with only a fraction of common changes 
between different states.  
4.        Loss of some homeostatic functions, and gain of some protective or detrimental functions, 
may happen simultaneously. Whether the overall impact on disease is beneficial or detrimental will 
be determined by the balance and nature of lost and gained functions, and the relative abundance 
of different astrocyte subpopulations.  
 
RECOMMENDATIONS 
4. Astrocyte phenotypes should be defined by a combination of molecular markers (Table 1) 
and functional readouts (Table 2), preferably in vivo. GFAP and morphology alone are not 
sufficient criteria to qualify astrocytes as reactive.  
5. The specifics of the astrocytes under study should be spelled out in titles, abstracts, and 
results of articles (e.g., X-positive astrocytes in Y region showed Z phenomenon). 
6. Multivariate and clustering analysis of molecular and functional data will facilitate the 
identification of distinct phenotypes of reactive astrocytes (Fig. 2).  
7. Local, regional, temporal, subject/patient, and sexual heterogeneity of reactive astrocytes 
should be studied (Fig. 2). 
8. The discovery and validation of plasma/serum and cerebrospinal fluid biomarkers, as well 
as of PET radiotracers of astrocyte reactivity, is a research priority, as it will facilitate astrocyte-
directed drug development.  
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Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 
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