36 research outputs found

    Affordable and robust phenotyping framework to analyse root system architecture of soil-grown plants

    Get PDF
    The phenotypic analysis of root system growth is important to inform efforts to enhance plant resource acquisition from soils. However, root phenotyping still remains challenging due to soil opacity, requiring systems that facilitate root system visibility and image acquisition. Previously reported systems require costly or bespoke materials not available in most countries, where breeders need tools to select varieties best adapted to local soils and field conditions. Here, we report an affordable soil‐based growth (rhizobox) and imaging system to phenotype root development in greenhouses or shelters. All components of the system are made from locally available commodity components, facilitating the adoption of this affordable technology in low‐income countries. The rhizobox is large enough (~6000 cm2 visible soil) to not restrict vertical root system growth for most if not all of the life cycle, yet light enough (∌21 kg when filled with soil) for routine handling. Support structures and an imaging station, with five cameras covering the whole soil surface, complement the rhizoboxes. Images are acquired via the Phenotiki sensor interface, collected, stitched and analysed. Root system architecture (RSA) parameters are quantified without intervention. RSA of a dicot (chickpea, Cicer arietinum L.) and a monocot (barley, Hordeum vulgare L.) species, which exhibit contrasting root systems, were analysed. Insights into root system dynamics during vegetative and reproductive stages of the chickpea lifecycle were obtained. This affordable system is relevant for efforts in Ethiopia and other low‐ and middle‐income countries to sustainably enhance crop yields and climate resilience

    Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics

    Get PDF
    Phenolic compounds represent a large family of plant secondary metabolites, essential for the quality of grape and wine and playing a major role in plant defense against biotic and abiotic stresses. Phenolic composition is genetically driven and greatly affected by environmental factors, including water stress. Amajor challenge for breeding of grapevine cultivars adapted to climate change and with high potential for wine-making is to dissect the complex plant metabolic response involved in adaptation mechanisms. A targeted metabolomics approach based on ultra high-performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QqQ-MS) analysis in the Multiple Reaction Monitoring (MRM) mode has been developed for high throughput profiling of the phenolic composition of grape skins. Thismethod enables rapid, selective, and sensitive quantification of 96 phenolic compounds (anthocyanins, phenolic acids, stilbenoids, flavonols, dihydroflavonols, flavan-3-ol monomers, and oligomersÂż), and of the constitutive units of proanthocyanidins (i.e., condensed tannins), giving access to detailed polyphenol composition. It was applied on the skins of mature grape berries from a core-collection of 279 Vitis vinifera cultivars grown with or without watering to assess the genetic variation for polyphenol composition and its modulation by irrigation, in two successive vintages (2014-2015). Distribution of berry weights and ÎŽ13C values showed that non irrigated vines were subjected to a marked water stress in 2014 and to a very limited one in 2015. Metabolomics analysis of the polyphenol composition and chemometrics analysis of this data demonstrated an influence of water stress on the biosynthesis of different polyphenol classes and cultivar differences in metabolic response to water deficit. Correlation networks gave insight on the relationships between the different polyphenol metabolites and related biosynthetic pathways. They also established patterns of polyphenol response to drought, with different molecular families affected either positively or negatively in the different cultivars, with potential impact on grape and wine quality

    Vers l’identification des mĂ©canismes molĂ©culaires impliquĂ©s dans la galloylation des proanthocyanidines chez la vigne

    No full text
    Among the secondary metabolites involved in grape berry and wine quality, condensed tannins or proanthocyanidins (PAs) play a major role, especially in astringency and color stability of wine. These molecules are also involved in plant defence against biotic and abiotic stresses. Furthermore, the beneficial effects of PAs to human health are well documented. In grapevine, PAs have the distinctive feature of being esterified with gallic acid. An acylation reaction called galloylation is responsible for this modification. Studies show that the galloylation influences oenological and pharmacological properties of PAs. In the grape berry, PAs are synthesized in the early stages of development, mainly in skin and seeds. A relatively small number of enzymatic steps are required for the biosynthesis of the basic structure of these metabolites and the corresponding genes are now widely known in model plants, including in grapevine. However, the molecular mechanisms involved in the final steps, including galloylation, are only partially known. Earlier results obtained after the search of QTL influencing the composition of the grape berry, especially the galloylation ratio of PAs, and transcriptomic studies after overexpression of transcription factors that regulate PAs biosynthesis pathway, have allowed the identification of genes potentially involved in these steps. Shikimate dehydrogenase (SDH) genes were identified. These genes would intervene upstream, for the biosynthesis of gallic acid. Three identified glucosyltransferases, already characterized in the laboratory, are involved in the biosynthesis of glucose ester of gallic acid (ÎČ-glucogalline), which could serve as an intermediary for PAs galloylation. These screening methods have also helped to identify 2 serine carboxypeptidase-like acyltransferases, called glucose acyltransferases (GATs) which are capable of catalyzing the last step of galloylation: the transfer of gallic acid from ÎČ-glucogalline to PAs. The first objective of this thesis was to determine the function of the SDHs encoded by grapevine genes. Recombinant SDHs, produced heterologously in E. coli, have the capacity to generate gallic acid in vitro. Their level of expression during development and in different tissues of the berry was also established. In vitro results are supported by the metabolic profile (gallic acid, ÎČ-glucogallin and PAs) of grapevine hairy -roots transformed with a SDH gene. The second objective of this thesis was to validate the function of the GATs by transient expression in tobacco leaves and in vitro enzyme assays. The transient transformation of grapevine leaves with GATs allowed to modulate the concentration of phenolic esters and notably galloylated flavan-3-ols in planta. The study of these genes was extended to vascular plants by phylogenetic analyses which allowed to identify peptide motifs potentially involved in the studied mechanisms and reflecting the sub-functionalization of certain genes. This work has provided informations on the genetic basis and molecular mechanisms involved in the biosynthesis of gallic acid and its two-step transfer on flavan-3-ols (galloylation). New hypotheses on the intervention of different carriers and nature of transported molecules can be proposed.Parmi les mĂ©tabolites secondaires impliquĂ©s dans la qualitĂ© du raisin et du vin, les tanins condensĂ©s ou proanthocyanidines (PAs) jouent un rĂŽle majeur, en particulier dans l'astringence et la stabilitĂ© de la couleur du vin. Ces molĂ©cules sont Ă©galement impliquĂ©es dans la dĂ©fense des plantes contre des stress biotiques et abiotiques. En outre, les effets bĂ©nĂ©fiques des PAs pour la santĂ© humaine sont bien documentĂ©s. Les PAs de la vigne ont la particularitĂ© d’ĂȘtre estĂ©rifiĂ©es avec de l’acide gallique. Une rĂ©action d’acylation appelĂ©e galloylation est responsable de cette modification. Les Ă©tudes montrent que la galloylation influence les propriĂ©tĂ©s Ɠnologiques et pharmacologiques des PAs. Dans la baie de raisin, les PAs sont synthĂ©tisĂ©s dans les premiers stades de dĂ©veloppement, principalement dans les pellicules et les pĂ©pins. Un nombre relativement faible d'Ă©tapes enzymatiques sont nĂ©cessaires pour la biosynthĂšse de la structure de base de ces mĂ©tabolites et les gĂšnes correspondants sont aujourd'hui largement connus chez les plantes modĂšles, y compris chez la vigne. Cependant, les mĂ©canismes molĂ©culaires impliquĂ©s dans les Ă©tapes finales, y compris la galloylation, ne sont encore que partiellement connus. Des rĂ©sultats antĂ©rieurs obtenus aprĂšs la recherche de QTL influençant la composition du raisin, et en particulier le taux de galloylation des PAs, et des Ă©tudes transcriptomiques aprĂšs surexpression de facteurs de transcription rĂ©gulant la biosynthĂšse de la voie des PAs, ont permis l'identification de gĂšnes potentiellement impliquĂ©s dans ces Ă©tapes. Des gĂšnes de shikimate dĂ©shydrogĂ©nase (SDH) ont Ă©tĂ© identifiĂ©s. Ces gĂšnes interviendraient en amont, pour la biosynthĂšse de l'acide gallique. Trois glucosyltransfĂ©rases ainsi identifiĂ©es et dĂ©jĂ  caractĂ©risĂ©es au laboratoire sont impliquĂ©es dans la biosynthĂšse de l'ester de glucose de l'acide gallique (ÎČ-glucogalline), qui servirait d'intermĂ©diaire pour la galloylation des PAs. Ces mĂ©thodes de criblage ont Ă©galement permis d’identifier 2 acyltransfĂ©rases de type sĂ©rine carboxypeptidase, nommĂ©es glucose acyltransfĂ©rases (GATs) qui seraient capables de catalyser la derniĂšre Ă©tape de galloylation: le transfert de l'acide gallique depuis la ÎČ-glucogalline sur les PAs. Le premier objectif de cette thĂšse a Ă©tĂ© de dĂ©terminer la fonction des SDHs codĂ©es par les gĂšnes de vigne. Certaines SDHs recombinantes produites de façon hĂ©tĂ©rologue chez E.coli ont la capacitĂ© Ă  produire de l'acide gallique in vitro. Leur niveau d’expression au cours du dĂ©veloppement et dans diffĂ©rents tissus de la baie a Ă©galement Ă©tĂ© Ă©tabli. Les rĂ©sultats obtenus in vitro sont Ă©tayĂ©s par le profil mĂ©tabolique (acide gallique, ÎČ-glucogalline et PAs) de hairy-roots de vigne transformĂ©es avec un gĂšne de SDH. Le second objectif de cette thĂšse a Ă©tĂ© de valider la fonction des GATs par expression transitoire dans des feuilles de tabac et des tests enzymatiques in vitro. La transformation transitoire de feuilles de vigne avec les GATs a permis de moduler la concentration d’esters phĂ©noliques et nomment des flavan-3-ols galloylĂ©s in planta. L’étude de ces gĂšnes a Ă©tĂ© Ă©tendue aux plantes vasculaires par des analyses phylogĂ©nĂ©tiques et a permis d’identifier des motifs peptidiques potentiellement impliquĂ©s dans les mĂ©canismes Ă©tudiĂ©s et reflĂ©tant la sub-fonctionnalisation de certains gĂšnes. Ce travail a fourni des informations sur les bases gĂ©nĂ©tiques et les mĂ©canismes molĂ©culaires impliquĂ©s dans la biosynthĂšse de l'acide gallique et son transfert en deux Ă©tapes sur les flavan-3-ols (galloylation). De nouvelles hypothĂšses sur l'intervention de diffĂ©rents transporteurs et la nature des molĂ©cules transportĂ©es pourront ĂȘtre formulĂ©es

    Vers l’identification des mĂ©canismes molĂ©culaires impliquĂ©s dans la galloylation des proanthocyanidines chez la vigne

    No full text
    Among the secondary metabolites involved in grape berry and wine quality, condensed tannins or proanthocyanidins (PAs) play a major role, especially in astringency and color stability of wine. These molecules are also involved in plant defence against biotic and abiotic stresses. Furthermore, the beneficial effects of PAs to human health are well documented. In grapevine, PAs have the distinctive feature of being esterified with gallic acid. An acylation reaction called galloylation is responsible for this modification. Studies show that the galloylation influences oenological and pharmacological properties of PAs. In the grape berry, PAs are synthesized in the early stages of development, mainly in skin and seeds. A relatively small number of enzymatic steps are required for the biosynthesis of the basic structure of these metabolites and the corresponding genes are now widely known in model plants, including in grapevine. However, the molecular mechanisms involved in the final steps, including galloylation, are only partially known. Earlier results obtained after the search of QTL influencing the composition of the grape berry, especially the galloylation ratio of PAs, and transcriptomic studies after overexpression of transcription factors that regulate PAs biosynthesis pathway, have allowed the identification of genes potentially involved in these steps. Shikimate dehydrogenase (SDH) genes were identified. These genes would intervene upstream, for the biosynthesis of gallic acid. Three identified glucosyltransferases, already characterized in the laboratory, are involved in the biosynthesis of glucose ester of gallic acid (ÎČ-glucogalline), which could serve as an intermediary for PAs galloylation. These screening methods have also helped to identify 2 serine carboxypeptidase-like acyltransferases, called glucose acyltransferases (GATs) which are capable of catalyzing the last step of galloylation: the transfer of gallic acid from ÎČ-glucogalline to PAs. The first objective of this thesis was to determine the function of the SDHs encoded by grapevine genes. Recombinant SDHs, produced heterologously in E. coli, have the capacity to generate gallic acid in vitro. Their level of expression during development and in different tissues of the berry was also established. In vitro results are supported by the metabolic profile (gallic acid, ÎČ-glucogallin and PAs) of grapevine hairy -roots transformed with a SDH gene. The second objective of this thesis was to validate the function of the GATs by transient expression in tobacco leaves and in vitro enzyme assays. The transient transformation of grapevine leaves with GATs allowed to modulate the concentration of phenolic esters and notably galloylated flavan-3-ols in planta. The study of these genes was extended to vascular plants by phylogenetic analyses which allowed to identify peptide motifs potentially involved in the studied mechanisms and reflecting the sub-functionalization of certain genes. This work has provided informations on the genetic basis and molecular mechanisms involved in the biosynthesis of gallic acid and its two-step transfer on flavan-3-ols (galloylation). New hypotheses on the intervention of different carriers and nature of transported molecules can be proposed.Parmi les mĂ©tabolites secondaires impliquĂ©s dans la qualitĂ© du raisin et du vin, les tanins condensĂ©s ou proanthocyanidines (PAs) jouent un rĂŽle majeur, en particulier dans l'astringence et la stabilitĂ© de la couleur du vin. Ces molĂ©cules sont Ă©galement impliquĂ©es dans la dĂ©fense des plantes contre des stress biotiques et abiotiques. En outre, les effets bĂ©nĂ©fiques des PAs pour la santĂ© humaine sont bien documentĂ©s. Les PAs de la vigne ont la particularitĂ© d’ĂȘtre estĂ©rifiĂ©es avec de l’acide gallique. Une rĂ©action d’acylation appelĂ©e galloylation est responsable de cette modification. Les Ă©tudes montrent que la galloylation influence les propriĂ©tĂ©s Ɠnologiques et pharmacologiques des PAs. Dans la baie de raisin, les PAs sont synthĂ©tisĂ©s dans les premiers stades de dĂ©veloppement, principalement dans les pellicules et les pĂ©pins. Un nombre relativement faible d'Ă©tapes enzymatiques sont nĂ©cessaires pour la biosynthĂšse de la structure de base de ces mĂ©tabolites et les gĂšnes correspondants sont aujourd'hui largement connus chez les plantes modĂšles, y compris chez la vigne. Cependant, les mĂ©canismes molĂ©culaires impliquĂ©s dans les Ă©tapes finales, y compris la galloylation, ne sont encore que partiellement connus. Des rĂ©sultats antĂ©rieurs obtenus aprĂšs la recherche de QTL influençant la composition du raisin, et en particulier le taux de galloylation des PAs, et des Ă©tudes transcriptomiques aprĂšs surexpression de facteurs de transcription rĂ©gulant la biosynthĂšse de la voie des PAs, ont permis l'identification de gĂšnes potentiellement impliquĂ©s dans ces Ă©tapes. Des gĂšnes de shikimate dĂ©shydrogĂ©nase (SDH) ont Ă©tĂ© identifiĂ©s. Ces gĂšnes interviendraient en amont, pour la biosynthĂšse de l'acide gallique. Trois glucosyltransfĂ©rases ainsi identifiĂ©es et dĂ©jĂ  caractĂ©risĂ©es au laboratoire sont impliquĂ©es dans la biosynthĂšse de l'ester de glucose de l'acide gallique (ÎČ-glucogalline), qui servirait d'intermĂ©diaire pour la galloylation des PAs. Ces mĂ©thodes de criblage ont Ă©galement permis d’identifier 2 acyltransfĂ©rases de type sĂ©rine carboxypeptidase, nommĂ©es glucose acyltransfĂ©rases (GATs) qui seraient capables de catalyser la derniĂšre Ă©tape de galloylation: le transfert de l'acide gallique depuis la ÎČ-glucogalline sur les PAs. Le premier objectif de cette thĂšse a Ă©tĂ© de dĂ©terminer la fonction des SDHs codĂ©es par les gĂšnes de vigne. Certaines SDHs recombinantes produites de façon hĂ©tĂ©rologue chez E.coli ont la capacitĂ© Ă  produire de l'acide gallique in vitro. Leur niveau d’expression au cours du dĂ©veloppement et dans diffĂ©rents tissus de la baie a Ă©galement Ă©tĂ© Ă©tabli. Les rĂ©sultats obtenus in vitro sont Ă©tayĂ©s par le profil mĂ©tabolique (acide gallique, ÎČ-glucogalline et PAs) de hairy-roots de vigne transformĂ©es avec un gĂšne de SDH. Le second objectif de cette thĂšse a Ă©tĂ© de valider la fonction des GATs par expression transitoire dans des feuilles de tabac et des tests enzymatiques in vitro. La transformation transitoire de feuilles de vigne avec les GATs a permis de moduler la concentration d’esters phĂ©noliques et nomment des flavan-3-ols galloylĂ©s in planta. L’étude de ces gĂšnes a Ă©tĂ© Ă©tendue aux plantes vasculaires par des analyses phylogĂ©nĂ©tiques et a permis d’identifier des motifs peptidiques potentiellement impliquĂ©s dans les mĂ©canismes Ă©tudiĂ©s et reflĂ©tant la sub-fonctionnalisation de certains gĂšnes. Ce travail a fourni des informations sur les bases gĂ©nĂ©tiques et les mĂ©canismes molĂ©culaires impliquĂ©s dans la biosynthĂšse de l'acide gallique et son transfert en deux Ă©tapes sur les flavan-3-ols (galloylation). De nouvelles hypothĂšses sur l'intervention de diffĂ©rents transporteurs et la nature des molĂ©cules transportĂ©es pourront ĂȘtre formulĂ©es

    Towards the identification of molecular mechanisms involved in proanthocyanidin galloylation in grapevine

    No full text
    Parmi les mĂ©tabolites secondaires impliquĂ©s dans la qualitĂ© du raisin et du vin, les tanins condensĂ©s ou proanthocyanidines (PAs) jouent un rĂŽle majeur, en particulier dans l'astringence et la stabilitĂ© de la couleur du vin. Ces molĂ©cules sont Ă©galement impliquĂ©es dans la dĂ©fense des plantes contre des stress biotiques et abiotiques. En outre, les effets bĂ©nĂ©fiques des PAs pour la santĂ© humaine sont bien documentĂ©s. Les PAs de la vigne ont la particularitĂ© d’ĂȘtre estĂ©rifiĂ©es avec de l’acide gallique. Une rĂ©action d’acylation appelĂ©e galloylation est responsable de cette modification. Les Ă©tudes montrent que la galloylation influence les propriĂ©tĂ©s Ɠnologiques et pharmacologiques des PAs. Dans la baie de raisin, les PAs sont synthĂ©tisĂ©s dans les premiers stades de dĂ©veloppement, principalement dans les pellicules et les pĂ©pins. Un nombre relativement faible d'Ă©tapes enzymatiques sont nĂ©cessaires pour la biosynthĂšse de la structure de base de ces mĂ©tabolites et les gĂšnes correspondants sont aujourd'hui largement connus chez les plantes modĂšles, y compris chez la vigne. Cependant, les mĂ©canismes molĂ©culaires impliquĂ©s dans les Ă©tapes finales, y compris la galloylation, ne sont encore que partiellement connus. Des rĂ©sultats antĂ©rieurs obtenus aprĂšs la recherche de QTL influençant la composition du raisin, et en particulier le taux de galloylation des PAs, et des Ă©tudes transcriptomiques aprĂšs surexpression de facteurs de transcription rĂ©gulant la biosynthĂšse de la voie des PAs, ont permis l'identification de gĂšnes potentiellement impliquĂ©s dans ces Ă©tapes. Des gĂšnes de shikimate dĂ©shydrogĂ©nase (SDH) ont Ă©tĂ© identifiĂ©s. Ces gĂšnes interviendraient en amont, pour la biosynthĂšse de l'acide gallique. Trois glucosyltransfĂ©rases ainsi identifiĂ©es et dĂ©jĂ  caractĂ©risĂ©es au laboratoire sont impliquĂ©es dans la biosynthĂšse de l'ester de glucose de l'acide gallique (ÎČ-glucogalline), qui servirait d'intermĂ©diaire pour la galloylation des PAs. Ces mĂ©thodes de criblage ont Ă©galement permis d’identifier 2 acyltransfĂ©rases de type sĂ©rine carboxypeptidase, nommĂ©es glucose acyltransfĂ©rases (GATs) qui seraient capables de catalyser la derniĂšre Ă©tape de galloylation: le transfert de l'acide gallique depuis la ÎČ-glucogalline sur les PAs. Le premier objectif de cette thĂšse a Ă©tĂ© de dĂ©terminer la fonction des SDHs codĂ©es par les gĂšnes de vigne. Certaines SDHs recombinantes produites de façon hĂ©tĂ©rologue chez E.coli ont la capacitĂ© Ă  produire de l'acide gallique in vitro. Leur niveau d’expression au cours du dĂ©veloppement et dans diffĂ©rents tissus de la baie a Ă©galement Ă©tĂ© Ă©tabli. Les rĂ©sultats obtenus in vitro sont Ă©tayĂ©s par le profil mĂ©tabolique (acide gallique, ÎČ-glucogalline et PAs) de hairy-roots de vigne transformĂ©es avec un gĂšne de SDH. Le second objectif de cette thĂšse a Ă©tĂ© de valider la fonction des GATs par expression transitoire dans des feuilles de tabac et des tests enzymatiques in vitro. La transformation transitoire de feuilles de vigne avec les GATs a permis de moduler la concentration d’esters phĂ©noliques et nomment des flavan-3-ols galloylĂ©s in planta. L’étude de ces gĂšnes a Ă©tĂ© Ă©tendue aux plantes vasculaires par des analyses phylogĂ©nĂ©tiques et a permis d’identifier des motifs peptidiques potentiellement impliquĂ©s dans les mĂ©canismes Ă©tudiĂ©s et reflĂ©tant la sub-fonctionnalisation de certains gĂšnes. Ce travail a fourni des informations sur les bases gĂ©nĂ©tiques et les mĂ©canismes molĂ©culaires impliquĂ©s dans la biosynthĂšse de l'acide gallique et son transfert en deux Ă©tapes sur les flavan-3-ols (galloylation). De nouvelles hypothĂšses sur l'intervention de diffĂ©rents transporteurs et la nature des molĂ©cules transportĂ©es pourront ĂȘtre formulĂ©es.Among the secondary metabolites involved in grape berry and wine quality, condensed tannins or proanthocyanidins (PAs) play a major role, especially in astringency and color stability of wine. These molecules are also involved in plant defence against biotic and abiotic stresses. Furthermore, the beneficial effects of PAs to human health are well documented. In grapevine, PAs have the distinctive feature of being esterified with gallic acid. An acylation reaction called galloylation is responsible for this modification. Studies show that the galloylation influences oenological and pharmacological properties of PAs. In the grape berry, PAs are synthesized in the early stages of development, mainly in skin and seeds. A relatively small number of enzymatic steps are required for the biosynthesis of the basic structure of these metabolites and the corresponding genes are now widely known in model plants, including in grapevine. However, the molecular mechanisms involved in the final steps, including galloylation, are only partially known. Earlier results obtained after the search of QTL influencing the composition of the grape berry, especially the galloylation ratio of PAs, and transcriptomic studies after overexpression of transcription factors that regulate PAs biosynthesis pathway, have allowed the identification of genes potentially involved in these steps. Shikimate dehydrogenase (SDH) genes were identified. These genes would intervene upstream, for the biosynthesis of gallic acid. Three identified glucosyltransferases, already characterized in the laboratory, are involved in the biosynthesis of glucose ester of gallic acid (ÎČ-glucogalline), which could serve as an intermediary for PAs galloylation. These screening methods have also helped to identify 2 serine carboxypeptidase-like acyltransferases, called glucose acyltransferases (GATs) which are capable of catalyzing the last step of galloylation: the transfer of gallic acid from ÎČ-glucogalline to PAs. The first objective of this thesis was to determine the function of the SDHs encoded by grapevine genes. Recombinant SDHs, produced heterologously in E. coli, have the capacity to generate gallic acid in vitro. Their level of expression during development and in different tissues of the berry was also established. In vitro results are supported by the metabolic profile (gallic acid, ÎČ-glucogallin and PAs) of grapevine hairy -roots transformed with a SDH gene. The second objective of this thesis was to validate the function of the GATs by transient expression in tobacco leaves and in vitro enzyme assays. The transient transformation of grapevine leaves with GATs allowed to modulate the concentration of phenolic esters and notably galloylated flavan-3-ols in planta. The study of these genes was extended to vascular plants by phylogenetic analyses which allowed to identify peptide motifs potentially involved in the studied mechanisms and reflecting the sub-functionalization of certain genes. This work has provided informations on the genetic basis and molecular mechanisms involved in the biosynthesis of gallic acid and its two-step transfer on flavan-3-ols (galloylation). New hypotheses on the intervention of different carriers and nature of transported molecules can be proposed

    Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies

    No full text
    How genetic factors control plant performance under stressful environmental conditions is a central question in ecology and for crop breeding. A multivariate framework was developed to examine the genetic architecture of performance-related traits in response to interacting environmental stresses. Ecophysiological and life history traits were quantified in the Arabidopsis thaliana Ler×Cvi mapping population exposed to constant soil water deficit and high air temperature. The plasticity of the genetic variance–covariance matrix (G-matrix) was examined using mixed-effects models after regression into principal components. Quantitative trait locus (QTL) analysis was performed on the predictors of genotype effects and genotype by environment interactions (G×E). Three QTLs previously identified for flowering time had antagonistic G×E effects on carbon acquisition and the other traits (phenology, growth, leaf morphology, and transpiration). This resulted in a size-dependent response of water use efficiency (WUE) to high temperature but not soil water deficit, indicating that most of the plasticity of carbon acquisition and WUE to temperature is controlled by the loci that control variation of development, size, growth, and transpiration. A fourth QTL, MSAT2.22, controlled the response of carbon acquisition to specific combinations of watering and temperature irrespective of plant size and development, growth, and transpiration rate, which resulted in size-independent plasticity of WUE. These findings highlight how the strategies to optimize plant performance may differ in response to water deficit and high temperature (or their combination), and how different G×E effects could be targeted to improve plant tolerance to these stresses

    BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds

    No full text
    Phenolic compounds are secondary metabolites involved in several plant growth and development processes, including resistance to biotic and abiotic stresses. The biosynthetic pathways leading to the vast diversity of plant phenolic products often include an acylation step, with phenolic compounds being the donor or acceptor molecules. To date, two acyltransferase families using phenolic compounds as acceptor or donor molecules have been described, with each using a different 'energy-rich' acyl donor. BAHD-acyltransferases, named after the first four biochemically characterized enzymes of the group, use acyl-CoA thioesters as donor molecules, whereas SCPL (Serine CarboxyPeptidase Like)-acyltransferases use 1-O-beta-glucose esters. Here, common and divergent specifications found in the literature for both enzyme families were analyzed to answer the following questions. Are both acyltransferases involved in the synthesis of the same molecule (or same group of molecules)? Are both acyltransferases recruited in the same plant? How does the subcellular localization of these enzymes impact metabolite trafficking in plant cells

    The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis

    No full text
    International audienceUnderstanding how biotic interactions can improve plant tolerance to drought is a challenging prospect for agronomy and ecology. Plant growth-promoting rhizobacteria (PGPR) are promising candidates but the phenotypic changes induced by PGPR under drought remain to be elucidated. We investigated the effects of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on two accessions of Arabidopsis thaliana with contrasting flowering time. We measured multiple morphophysiological traits related to plant growth and development in order to quantify the added value of the bacteria to drought-response strategies of Arabidopsis in soil conditions. A delay in reproductive development induced by the bacteria resulted in a gain of biomass that was independent of the accession and the watering regime. Coordinated changes in transpiration, ABA content, photosynthesis and development resulted in higher water-use efficiency and a better tolerance to drought of inoculated plants. Our findings give new insights into the ecophysiological bases by which PGPR can confer stress tolerance to plants. Rhizobacteria-induced delay in flowering time could represent a valuable strategy for increasing biomass yield, whereas rhizobacteria-induced improvement of water use is of particular interest in multiple scenarios of water availability

    Growing on calcareous soils and facing climate change

    No full text
    International audienceSoil calcium carbonate (CaCO3) impacts plant mineral nutrition far beyond Fe metabolism, imposing constraints for crop growth and quality in calcareous agrosystems. Our knowledge on plant strategies to tolerate CaCO3 effects mainly refers to Fe acquisition. This review provides an update on plant cellular and molecular mechanisms recently described to counteract the negative effects of CaCO3 in soils, as well as recent efforts to identify genetic bases involved in CaCO3 tolerance from natural populations, that could be exploited to breed CaCO3-tolerant crops. Finally, we review the impact of environmental factors (soil water content, air CO2, and temperature) affecting soil CaCO3 equilibrium and plant tolerance to calcareous soils, and we propose strategies for improvement in the context of climate change
    corecore