139 research outputs found
Effect of strike point displacements on the ITER tungsten divertor heat loads
© 2018 IAEA, Vienna. The baseline ITER burning plasma equilibrium is designed to place the divertor strike points deep into the 'V-shaped' region formed by the high heat flux handling vertical targets (VT) and the reflector plates (RP). The divertor plasma performance under these conditions has been extensively studied in the past two decades with the SOLPS4.3 plasma boundary code suite. However, during tokamak operation, inaccuracies in the control of the vertical plasma position, or a requirement to avoid damaged monoblocks, could force the strike point position further down the VTs, or even directly on the RPs. In this paper, we present the results from the first SOLPS-ITER modelling in which the consequences of strike point displacements on the divertor plasma behaviour and surface heat loading are assessed. The starting point of the study is a baseline coupled fluid plasma-kinetic neutral solution (without fluid drifts), corresponding to an ITER burning plasma scenario at Q DT = 10 with neon seeding for detachment control, P SOL = 100 MW, λ q ∼ 2 mm and nominal strike point positions. From this baseline condition, the equilibrium is progressively moved downwards in a series of rigid displacements, obtaining new steady-state solutions, up to a maximum displacement of ∼8 cm, beyond which the separatrix is too close to the inner dome wing. At this point, the inner strike point is well onto the inner RP while the outer strike point is still on the VT. The different interaction of the recycled neutrals with the SOL plasma when the strike point intersects the inner RP, switching from vertical to horizontal target configuration, enhances the detachment degree at the inboard divertor, mitigating the heat load deposited onto the inner RP. At the outboard divertor the plasma condition is not significantly affected by the downward displacements, nor are the power fluxes to the outer RP. Finally, the heat load profiles computed with SOLPS are used in input for a finite element thermal analysis, considering the full cooling geometry, to assess the response of the VTs and RPs under the conditions exploited in the displaced scenarios. This thermal model, based on a simplified treatment not requiring a full 3D description of the divertor monoblock plasma-facing units, constitutes a new module for the SOLPS-ITER code suite. ispartof: NUCLEAR FUSION vol:58 issue:12 status: accepte
Test beam performance measurements for the Phase I upgrade of the CMS pixel detector
A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
P-Type Silicon Strip Sensors for the new CMS Tracker at HL-L-HC
Abstract: The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase
the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors
with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an
irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs
for the future outer tracker at the CMS experiment. Based on these results, the collaboration has
chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that
sensor type
Stabilization of EMC3-EIRENE for detachment conditions and comparison to SOLPS-ITER
Numerical access to cold divertor conditions in tokamaks with EMC3-EIRENE has been proven to be challenging, but is now possible for the first time after a linearization of the electron energy sink term from interaction with neutral gas. This is shown based on a 1D flux tube simulation, and consecutively for a full 3D ITER edge plasma configuration. Comparison with SOLPS-ITER simulations for the initial non-active phase in ITER with a gas fueled L-mode show good agreement with EMC3-EIRENE for the transition to detachment. Keywords: Plasma edge modeling, Detachment, Numerical stabilit
- …