68 research outputs found

    Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema

    Get PDF
    BACKGROUND: Oxidative stress, resulting from the increased oxidative burden and decreased level of antioxidant proteins, plays a role in the pathophysiology of smoking-related pulmonary emphysema. Expression of several antioxidant proteins, such as heme oxygenase-1 (HO-1), glutathione peroxidase 2 (GPX2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), results from an equilibrium created by positive or negative regulation by the transcription factors Nrf2, Keap1 and Bach1, respectively. However, whether the expression of these transcription factors is altered in emphysema and could account for decreased expression of antioxidant proteins is not known. A study was undertaken to investigate the expression and subcellular localisation of Nrf2, Keap1 and Bach1 as potential regulators of HO-1, GPX2 and NQO1 in alveolar macrophages, a key cell in oxidative stress, in lung surgical specimens from non-smokers without emphysema and smokers with and without emphysema. METHODS AND RESULTS: Western blot, immunohistochemical and laser scanning confocal analysis revealed that the Nrf2 protein level decreased significantly in whole lung tissue and alveolar macrophages (cytosol and nucleus) in patients with emphysema compared with those without emphysema. Conversely, Bach1 and Keap1 levels were increased in patients with emphysema. These modifications were associated with a parallel decrease in the expression of HO-1, GPX2 and NQO1 at the cellular level, which was inversely correlated with airway obstruction and distension indexes, and increased macrophage expression of the lipid peroxidation product 4-hydroxy-2-nonenal. Silencing RNA experiments in vitro in THP-1 cells were performed to confirm the cause-effect relation between the loss of Nrf2 and the decrease in HO-1, NQO1 and GPX2 expression. Nrf2/Keap1-Bach1 equilibrium was altered in alveolar macrophages in pulmonary emphysema, which points to a decreased stress response phenotype. CONCLUSIONS: This finding opens a new view of the pathophysiology of emphysema and could provide the basis for new therapeutic approaches based on preservation and/or restoration of such equilibrium

    Induction of Heme Oxygenase-1, Biliverdin Reductase and H-Ferritin in Lung Macrophage in Smokers with Primary Spontaneous Pneumothorax: Role of HIF-1α

    Get PDF
    Few data concern the pathophysiology of primary spontaneous pneumothorax (PSP), which is associated with alveolar hypoxia/reoxygenation. This study tested the hypothesis that PSP is associated with oxidative stress in lung macrophages. We analysed expression of the oxidative stress marker 4-HNE; the antioxidant and anti-inflammatory proteins heme oxygenase-1 (HO-1), biliverdin reductase (BVR) and heavy chain of ferritin (H-ferritin); and the transcription factors controlling their expression Nrf2 and HIF-1alpha, in lung samples from smoker and nonsmoker patients with PSP (PSP-S and PSP-NS), cigarette smoke being a risk factor of recurrence of the disease.mRNA was assessed by RT-PCR and proteins by western blot, immunohistochemistry and confocal laser analysis. 4-HNE, HO-1, BVR and H-ferritin were increased in macrophages from PSP-S as compared to PSP-NS and controls (C). HO-1 increase was associated with increased expression of HIF-1alpha mRNA and protein in alveolar macrophages in PSP-S patients, whereas Nrf2 was not modified. To understand the regulation of HO-1, BVR and H-ferritin, THP-1 macrophages were exposed to conditions mimicking conditions in C, PSP-S and PSP-NS patients: cigarette smoke condensate (CS) or air exposure followed or not by hypoxia/reoxygenation. Silencing RNA experiments confirmed that HIF-1alpha nuclear translocation was responsible for HO-1, BVR and H-ferritin induction mediated by CS and hypoxia/reoxygenation.PSP in smokers is associated with lung macrophage oxidative stress. The response to this condition involves HIF-1alpha-mediated induction of HO-1, BVR and H-ferritin

    The EG95 Antigen of Echinococcus spp. Contains Positively Selected Amino Acids, which May Influence Host Specificity and Vaccine Efficacy

    Get PDF
    Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy

    The Receptor Slamf1 on the Surface of Myeloid Lineage Cells Controls Susceptibility to Infection by Trypanosoma cruzi

    Get PDF
    Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1−/− mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1−/− mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection

    Membrane diffusion- and capillary blood volume measurements are not useful as screening tools for pulmonary arterial hypertension in systemic sclerosis: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no optimal screening tool for the assessment of pulmonary arterial hypertension (PAH) in patients with systemic sclerosis (SSc). A decreasing transfer factor of the lung for CO (TLCO) is associated with the development of PAH in SSc. TLCO can be partitioned into the diffusion of the alveolar capillary membrane (Dm) and the capillary blood volume (Vc). The use of the partitioned diffusion to detect PAH in SSc is not well established yet. This study evaluates whether Dm and Vc could be candidates for further study of the use for screening for PAH in SSc.</p> <p>Methods</p> <p>Eleven SSc patients with PAH (SScPAH+), 13 SSc patients without PAH (SScPAH-) and 10 healthy control subjects were included. Pulmonary function testing took place at diagnosis of PAH. TLCO was partitioned according to Roughton and Forster. As pulmonary fibrosis in SSc influences values of the (partitioned) TLCO, these were adjusted for fibrosis score as assessed on HRCT.</p> <p>Results</p> <p>TLCO as percentage of predicted (%) was lower in SScPAH+ than in SScPAH- (41 ± 7% <it>vs</it>. 63 ± 12%, p < 0.0001, respectively). Dm% in SScPAH+ was decreased as compared with SScPAH- (22 ± 6% <it>vs</it>. 39 ± 12%, p < 0.0001, respectively), also after adjustment for total fibrosis score (before adjustment: B = 17.5, 95% CI 9.0–25.9, p = < 0.0001; after adjustment: B = 14.3, 95% CI 6.0–21.7, p = 0.008). No difference was found in Vc%. There were no correlations between pulmonary hemodynamic parameters and Dm% in the PAH groups.</p> <p>Conclusion</p> <p>SScPAH+ patients have lower Dm% than SScPAH- patients. There are no correlations between Dm% and hemodynamic parameters of PAH in SScPAH+. These findings do not support further study of the role of partitioning TLCO in the diagnostic work- up for PAH in SSc.</p

    Hepatocyte and keratinocyte growth factors and their receptors in human lung emphysema

    Get PDF
    BACKGROUND: Hepatocyte and keratinocyte growth factors are key growth factors in the process of alveolar repair. We hypothesized that excessive alveolar destruction observed in lung emphysema involves impaired expression of hepatocyte and keratinocyte growth factors or their respective receptors, c-met and keratinocyte growth factor receptor. The aim of our study was to compare the expression of hepatocyte and keratinocyte growth factors and their receptors in lung samples from 3 groups of patients: emphysema; smokers without emphysema and non-smokers without emphysema. METHODS: Hepatocyte and keratinocyte growth factor proteins were analysed by immunoassay and western blot; mRNA expression was measured by real time quantitative polymerase chain reaction. RESULTS: Hepatocyte and keratinocyte growth factors, c-met and keratinocyte growth factor receptor mRNA levels were similar in emphysema and non-emphysema patients. Hepatocyte growth factor mRNA correlated negatively with FEV1 and the FEV1/FVC ratio both in emphysema patients and in smokers with or without emphysema. Hepatocyte and keratinocyte growth factor protein concentrations were similar in all patients' groups. CONCLUSION: The expression of hepatocyte and keratinocyte growth factors and their receptors is preserved in patients with lung emphysema as compared to patients without emphysema. Hepatocyte growth factor mRNA correlates with the severity of airflow obstruction in smokers

    Allergic rhinitis and asthma: inflammation in a one-airway condition

    Get PDF
    BACKGROUND: Allergic rhinitis and asthma are conditions of airway inflammation that often coexist. DISCUSSION: In susceptible individuals, exposure of the nose and lungs to allergen elicits early phase and late phase responses. Contact with antigen by mast cells results in their degranulation, the release of selected mediators, and the subsequent recruitment of other inflammatory cell phenotypes. Additional proinflammatory mediators are released, including histamine, prostaglandins, cysteinyl leukotrienes, proteases, and a variety of cytokines, chemokines, and growth factors. Nasal biopsies in allergic rhinitis demonstrate accumulations of mast cells, eosinophils, and basophils in the epithelium and accumulations of eosinophils in the deeper subepithelium (that is, lamina propria). Examination of bronchial tissue, even in mild asthma, shows lymphocytic inflammation enriched by eosinophils. In severe asthma, the predominant pattern of inflammation changes, with increases in the numbers of neutrophils and, in many, an extension of the changes to involve smaller airways (that is, bronchioli). Structural alterations (that is, remodeling) of bronchi in mild asthma include epithelial fragility and thickening of its reticular basement membrane. With increasing severity of asthma there may be increases in airway smooth muscle mass, vascularity, interstitial collagen, and mucus-secreting glands. Remodeling in the nose is less extensive than that of the lower airways, but the epithelial reticular basement membrane may be slightly but significantly thickened. CONCLUSION: Inflammation is a key feature of both allergic rhinitis and asthma. There are therefore potential benefits for application of anti-inflammatory strategies that target both these anatomic sites

    Coadministration of the Three Antigenic Leishmania infantum Poly (A) Binding Proteins as a DNA Vaccine Induces Protection against Leishmania major Infection in BALB/c Mice

    Full text link
    Highly conserved intracellular proteins from Leishmania have been described as antigens in natural and experimental infected mammals. The present study aimed to evaluate the antigenicity and prophylactic properties of the Leishmania infantum Poly (A) binding proteins (LiPABPs). Three different members of the LiPABP family have been described. Recombinant tools based on these proteins were constructed: recombinant proteins and DNA vaccines. The three recombinant proteins were employed for coating ELISA plates. Sera from human and canine patients of visceral leishmaniasis and human patients of mucosal leishmaniasis recognized the three LiPABPs. In addition, the protective efficacy of a DNA vaccine based on the combination of the three Leishmania PABPs has been tested in a model of progressive murine leishmaniasis: BALB/c mice infected with Leishmania major. The induction of a Th1-like response against the LiPABP family by genetic vaccination was able to down-regulate the IL-10 predominant responses elicited by parasite LiPABPs after infection in this murine model. This modulation resulted in a partial protection against L. major infection. LiPABP vaccinated mice showed a reduction on the pathology that was accompanied by a decrease in parasite burdens, in antibody titers against Leishmania antigens and in the IL-4 and IL-10 parasite-specific mediated responses in comparison to control mice groups immunized with saline or with the non-recombinant plasmid. The results presented here demonstrate for the first time the prophylactic properties of a new family of Leishmania antigenic intracellular proteins, the LiPABPs. The redirection of the immune response elicited against the LiPABP family (from IL-10 towards IFN-γ mediated responses) by genetic vaccination was able to induce a partial protection against the development of the disease in a highly susceptible murine model of leishmaniasisThe study was supported in Spain by grants from Ministerio de Ciencia e Innovación FIS PI11/00095 and FISPI14/00366 from the Instituto de Salud Carlos III within the Network of TropicalDiseases Research (VI P I+D+I 2008-2011, ISCIII -Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0009)). This work was also supported in Brazil by a grant from CNPq (Ciencia sem Fronteiras-PVE 300174/2014-4). A CBMSO institutional grant from Fundación Ramón Areces is also acknowledged. EAFC is a grant recipient of CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Interactions of human galectins with Trypanosoma cruzi: vinding profile correlate with genetic clustering of lineages

    Get PDF
    We report here the specific interaction between several members of the human galectin family with the three developmental stages of several genetic lineages of the protozoan parasite Trypanosoma cruzi. We provide data of specific and differential binding of human galectin (gal)-1, -3, -4, -7 and -8 to 14 strains of T. cruzi that belong to the six genetic lineages representing the genetic diversity of the parasite. It is shown that galectins preferentially bind forms present in the host, trypomastigotes and amastigotes, compared with the non-infective epimastigote present on the intestinal tract of the vector, reflecting the changes on glycosylation that occur during the metacyclogenesis and amastigogenesis process. Also, it is evidenced that galectin binding to the parasites promotes binding to the host cells and higher infection rates. In addition, evidence is provided indicating that the intracellular amastigotes may take over the cytosolic pool of some galectins when released to the extracellular medium. Finally, by applying unweighted pair group method analysis to the galectin-binding profile to either cell-derived trypomastigotes or amastigotes, we show that the differential-binding profile by the host galectins to the six lineages resembles the clustering based in genetic data. Therefore, the differential-binding profile for the six lineages could have implications in the immunopathology of Chagas' disease, affecting the complex network of immune responses on which galectins mediate, thus providing linkage clues to the notion that different lineages may be related to different clinical forms of the disease
    • …
    corecore