153 research outputs found

    Heavy Naphtha Fractions 85-155 °С Recycling in the Catalytic Reforming Industrial Unit

    Get PDF
    Catalytic naphtha reforming is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. In these paper, the mathematical modelling method application for catalytic reforming installation of Komsomolsk oil-refinery is proposed. The mathematical model-based system "Catalyst Control" was used for catalytic reforming installation monitoring. The quality of the product from the unit was studied, with hydrocracking gasoline used as the feedstock. The impact of the feedstock on the product output was analyzed. It is shown that the feedstock replacement of catalytic reforming unit L-35-11/450K has positive impact on high-octane product output and increases the resource efficiency of the process

    Mathematical Modelling Method Application for Optimisation of Catalytic Reforming process

    Get PDF
    The application of mathematical modelling method monitoring of catalytic reforming unit of Komsomolsk oil-refinery is proposed. The mathematical model-based system “Catalyst's Control” which takes into account both the physical and chemical mechanisms of hydrocarbon mixture conversion reaction as well as the catalyst deactivation was used for catalytic reforming installation monitoring. The models created can be used for optimization and prediction of operating parameters (octane number, reactors outlet temperature and yield) of the reforming process. It is shown, that the work on the optimal activity allows increasing product output with a constant level of production costs, and get the information about Pt-Re catalyst work efficiency

    Opportunities for topical antimicrobial therapy: permeation of canine skin by fusidic acid

    Get PDF
    BACKGROUND: Staphylococcal infection of the canine epidermis and hair follicle is amongst the commonest reasons for antimicrobial prescribing in small animal veterinary practice. Topical therapy with fusidic acid (FA) is an attractive alternative to systemic therapy based on low minimum inhibitory concentrations (MICs, commonly <0.03 mg/l) documented in canine pathogenic staphylococci, including strains of MRSA and MRSP (methicillin-resistant Staphylococcus aureus and S. pseudintermedius). However, permeation of canine skin by FA has not been evaluated in detail. This study aimed to define the degree and extent of FA permeation in canine skin in vitro from two sites with different hair follicle density following application of a licensed ophthalmic formulation that shares the same vehicle as an FA-betamethasone combination product approved for dermal application in dogs. Topical FA application was modelled using skin held in Franz-type diffusion cells. Concentrations of FA in surface swabs, receptor fluid, and transverse skin sections of defined anatomical depth were determined using high-performance liquid chromatography and ultraviolet (HPLC-UV) analysis. RESULTS: The majority of FA was recovered by surface swabs after 24 h, as expected (mean ± SEM: 76.0 ± 17.0%). FA was detected within 424/470 (90%) groups of serial sections of transversely cryotomed skin containing follicular infundibula, but never in 48/48 (100%) groups of sections containing only deeper follicular structures, nor in receptor fluid, suggesting that FA does not permeate beyond the infundibulum. The FA concentration (mean ± SEM) in the most superficial 240 μm of skin was 2000 ± 815 μg/g. CONCLUSIONS: Topically applied FA can greatly exceed MICs for canine pathogenic staphylococci at the most common sites of infection. Topical FA therapy should now be evaluated using available formulations in vivo as an alternative to systemic therapy for canine superficial bacterial folliculitis.Peer reviewedFinal Published versio

    Formulacija i evaluacija monolitnih matriksnih polimernih filmova za transdermalnu isporuku nitrendipina

    Get PDF
    The objective of the present work was to develop a suitable transdermal drug delivery system for nitrendipine. Polymeric films of nitrendipine were prepared by the film casting technique (glass ring) on mercury substrate. They were evaluated for physicochemical parameters, in vitro release and ex vivo permeation (heat separated human epidermis). Release of the drug from the films followed anomalous transport (0.5 < n < 1). Polymeric combination containing Eudragit RL 100:PVP K 30 in 4:6 ratio showed the best results. Maximum drug release and skin permeability coefficient in 48 h were 85.8 % and 0.0142 cm h-1, respectively, in formulation C3 (Eudragit RL 100: Plasdone S 630; 4:6) and 88.0 % and 0.0155 cm h-1, respectively, in formulation D3 (Eudragit RL 100: PVP K 30; 4:6). FTIR and TLC studies indicated no drug and polymer interaction.Cilj rada bio je razvoj transdermalnog sustava nitrendipina. Polimerni filmovi nitrendipina pripravljeni su metodom lijevanja (stakleni prsten) na podlozi od žive. Ispitivani su fizičkokemijski parametri, in vitro oslobađanje i ex vivo permeacija (toplinom odvojena humana epiderma). Oslobađanje lijeka iz filmova slijedilo je anomalni transport (0,5 < n < 1). Najbolji rezultati postignuti su kombinacijom polimera Eudragit RL 100 i PVP K 30 u omjeru 4:6. Maksimalno oslobađanje ljekovite tvari i najbolji koeficijent permeacije kroz kožu tijekom 48 h bio je 85,8 %, odnosno 0,0142 cm h1 za formulaciju C3 (Eudragit RL 100 : Plasdone S 630; 4:6) i 88,0 %, odnosno 0,0155 cm h1 za formulaciju D3 (Eudragit RL 100 : PVP K 30; 4:6). FTIR i TLC ukazuju na to da nema interakcije između ljekovite tvari i polimera

    In vivo confocal Raman microspectroscopy of the skin: Noninvasive determination of molecular concentration profiles

    Get PDF
    Confocal Raman spectroscopy is introduced as a noninvasive in vivo optical method to measure molecular concentration profiles in the skin. It is shown how it can be applied to determine the water concentration in the stratum corneum as a function of distance to the skin surface, with a depth resolution of 5 mum. The resulting in vivo concentration profiles are in qualitative and quantitative agreement with published data, obtained by in vitro X-ray microanalysis of skin samples. Semi-quantitative concentration profiles were determined for the major constituents of natural moisturizing factor (serine, glycine, pyrrolidone-5-carboxylic acid, arginine, ornithine, citrulline, alanine, histidine, urocanic acid) and for the sweat constituents lactate and urea. A detailed description is given of the signal analysis methodology that enables the extraction of this information from the skin Raman spectra. No other noninvasive in vivo method exists that enables an analysis of skin molecular composition as a function of distance to the skin surface with similar detail and spatial resolution. Therefore, it may be expected that in vivo confocal Raman spectroscopy will find many applications in basic and applied dermatologic research

    In Vivo Methods for the Assessment of Topical Drug Bioavailability

    Get PDF
    This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described

    Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: A review

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be subsequently published in European Journal of Pharmaceutics and Biopharmaceutics .Transdermal drug delivery (TDD) is limited by the outer layer of the skin, i.e., the stratum corneum. Research on TDD has become very active in recent years and various technologies have been developed to overcome the resistance of the stratum corneum to molecular diffusion. In particular, researchers have started to consider the possibility of combining the TDD technologies in order to have further increase in drug permeability. Microneedles (MNs) and ultrasound are both promising technologies. They achieve enhancement in drug permeation via different mechanisms and therefore give a good potential for combining with each other. This review will focus on discussing the potential of this combinational technique along with other important issues, e.g., the mechanisms of ultrasound and MNs as it is these mechanisms which are coupled via the two systems (i.e. MNs and ultrasound). We discuss the possible ways to achieve this combination as well as how this combination would increase the permeability. Some of the undeveloped (weaker) research areas of MNs and sonophoresis are also discussed in order to understand the true potential of combining the two technologies when they are developed further in the future. We propose several hypothetical combinations based on the possible mechanisms involved in MNs and ultrasound. Furthermore, we carry out a cluster analysis by which we determine the significance of this combinational method in comparison with some other selected combinational methods for TDD (e.g., MNs and iontophoresis). Using a time series analysis tool (ARIMA model), the current trend and the future development of combined MNs and ultrasound are also analysed. Overall, the review in this paper indicates that combining MNs and ultrasound is a promising TDD method for the future
    corecore