75 research outputs found

    SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand

    Get PDF
    The identification of conserved syntenic regions enables discovery of predicted locations for orthologous and homeologous genes, evenwhennosuchgeneispresent.Thiscapabilitymeansthatsynteny-basedmethodsarefarmoreeffectivethansequencesimilaritybased methods in identifying true-negatives, a necessity forstudying gene loss and gene transposition. However, the identification of syntenicregionsrequirescomplexanalyseswhichmustberepeatedforpairwisecomparisonsbetweenanytwospecies.Therefore,as the number of published genomes increases, there is a growing demand for scalable, simple-to-use applications to perform comparative genomic analyses that cater to both gene family studies and genome-scale studies. We implemented SynFind, a web-based tool that addresses this need. Given one query genome, SynFind is capable of identifying conserved syntenic regions in any set of targetgenomes.SynFindiscapableofreportingper-geneinformation,usefulforresearchersstudyingspecificgenefamilies,aswellas genome-wide data sets of syntenic gene and predicted gene locations, critical for researchers focused on large-scale genomic analyses. Inference of syntenic homologs provides the basis for correlation of functional changes around genes of interests between related organisms. Deployed on the CoGe online platform, SynFind is connected to the genomic data from over 15,000 organisms from all domains of life as well as supporting multiple releases of the same organism. SynFind makes use of a powerful job execution framework that promises scalability and reproducibility. SynFind can be accessed at http://genomevolution.org/CoGe/SynFind.pl. A video tutorial of SynFind using Phytophthrora as an example is available at http://www.youtube.com/watch?v=2Agczny9Nyc

    SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand

    Get PDF
    The identification of conserved syntenic regions enables discovery of predicted locations for orthologous and homeologous genes, evenwhennosuchgeneispresent.Thiscapabilitymeansthatsynteny-basedmethodsarefarmoreeffectivethansequencesimilaritybased methods in identifying true-negatives, a necessity forstudying gene loss and gene transposition. However, the identification of syntenicregionsrequirescomplexanalyseswhichmustberepeatedforpairwisecomparisonsbetweenanytwospecies.Therefore,as the number of published genomes increases, there is a growing demand for scalable, simple-to-use applications to perform comparative genomic analyses that cater to both gene family studies and genome-scale studies. We implemented SynFind, a web-based tool that addresses this need. Given one query genome, SynFind is capable of identifying conserved syntenic regions in any set of targetgenomes.SynFindiscapableofreportingper-geneinformation,usefulforresearchersstudyingspecificgenefamilies,aswellas genome-wide data sets of syntenic gene and predicted gene locations, critical for researchers focused on large-scale genomic analyses. Inference of syntenic homologs provides the basis for correlation of functional changes around genes of interests between related organisms. Deployed on the CoGe online platform, SynFind is connected to the genomic data from over 15,000 organisms from all domains of life as well as supporting multiple releases of the same organism. SynFind makes use of a powerful job execution framework that promises scalability and reproducibility. SynFind can be accessed at http://genomevolution.org/CoGe/SynFind.pl. A video tutorial of SynFind using Phytophthrora as an example is available at http://www.youtube.com/watch?v=2Agczny9Nyc

    Drafting a composite indicator of validity for regulatory models and legal systems

    Get PDF
    The aim of this paper is to lay the groundwork for the creation of a composite indicator of the validity of regulatory systems. The composite nature of the indicator implies a) that its construction is embedded in the long-standing theoretical debate and framework of legal validity; b) that it formally contains other sub-indicators whose occurrence is essential to the determination of validity. The paper suggests, in other words, that validity is a second-degree property, i.e., one that occurs only once the justice, efficiency, effectiveness, and enforceability of the system have been checked

    Balancing, Proportionality, and Constitutional Rights

    Get PDF
    In the theory and practice of constitutional adjudication, proportionality review plays a crucial role. At a theoretical level, it lies at core of the debate on rights adjudication; in judicial practice, it is a widespread decision-making model characterizing the action of constitutional, supra-national and international courts. Despite its circulation and centrality in contemporary legal discourse, proportionality in rights-adjudication is still extremely controversial. It raises normative questions—concerning its justification and limits—and descriptive questions—regarding its nature and distinctive features. The chapter addresses both orders of questions. Part I centres on the justification of proportionality review, the connection between proportionality, balancing and theories of rights and the critical aspects of this connection. Part II identifies and analyses the different forms of proportionality both in review, as a template for rights-adjudication, and of review, as a way of defining the scope and limits of adjudication

    Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs

    Get PDF
    Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5′ and 3′ UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org)

    Solutions for the stable roommates problem with payments

    Get PDF
    The stable roommates problem with payments has as input a graph G=(V,E)G=(V,E) with an edge weighting w:E→R≥0w:E→R≥0 and the problem is to find a stable solution. A solution is a matching MM with a vector p∈R≥0V that satisfies pu+pv=w(uv)pu+pv=w(uv) for all uv∈Muv∈M and pu=0pu=0 for all uu unmatched in MM. A solution is stable if it prevents blocking pairs, i.e., pairs of adjacent vertices uu and vv with pu+p

    Competition between a Lawn-Forming Cynodon dactylon and a Tufted Grass Species Hyparrhenia hirta on a South-African Dystrophic Savanna

    No full text
    South African savanna grasslands are often characterised by indigestible tufted grass species whereas lawn grasses are far more desirable in terms of herbivore sustenance. We aimed to investigate the role of nutrients and/or the disturbance (grazing, trampling) by herbivores on the formation of grazing lawns. We conducted a series of common garden experiments to test the effect of nutrients on interspecific competition between a typical lawn-forming grass species (Cynodon dactylon) and a species that is frequently found outside grazing lawns (Hyparrhenia hirta), and tested for the effect of herbivore disturbance in the form of trampling and clipping. We also performed a vegetation and herbivore survey to apply experimentally derived insights to field observations. Our results showed that interspecific competition was not affected by soil nutrient concentrations. C. dactylon did show much more resilience to disturbance than H. hirta, presumably due to the regenerative capacity of its rhizomes. Results from the field survey were in line with these findings, describing a correlation between herbivore pressure and C. dactylon abundance. We conclude that herbivore disturbance, and not soil nutrients, provide C. dactylon with a competitive advantage over H. hirta, due to vegetative regeneration from its rhizomes. This provides evidence for the importance of concentrated, high herbivore densities for the creation and maintenance of grazing lawns
    • …
    corecore