22 research outputs found

    Comparative analytical performance of multiple plasma Aβ42 and Aβ40 assays and their ability to predict positron emission tomography amyloid positivity

    Get PDF
    INTRODUCTION: This report details the approach taken to providing a dataset allowing for analyses on the performance of recently developed assays of amyloid beta (Aβ) peptides in plasma and the extent to which they improve the prediction of amyloid positivity. METHODS: Alzheimer's Disease Neuroimaging Initiative plasma samples with corresponding amyloid positron emission tomography (PET) data were run on six plasma Aβ assays. Statistical tests were performed to determine whether the plasma Aβ measures significantly improved the area under the receiver operating characteristic curve for predicting amyloid PET status compared to age and apolipoprotein E (APOE) genotype. RESULTS: The age and APOE genotype model predicted amyloid status with an area under the curve (AUC) of 0.75. Three assays improved AUCs to 0.81, 0.81, and 0.84 (P < .05, uncorrected for multiple comparisons). DISCUSSION: Measurement of Aβ in plasma contributes to addressing the amyloid component of the ATN (amyloid/tau/neurodegeneration) framework and could be a first step before or in place of a PET or cerebrospinal fluid screening study. HIGHLIGHTS: The Foundation of the National Institutes of Health Biomarkers Consortium evaluated six plasma amyloid beta (Aβ) assays using Alzheimer's Disease Neuroimaging Initiative samples. Three assays improved prediction of amyloid status over age and apolipoprotein E (APOE) genotype. Plasma Aβ42/40 predicted amyloid positron emission tomography status better than Aβ42 or Aβ40 alone

    Protecting Synaptic Function from Acute Oxidative Stress: A Novel Role for Big K+ (BK) Channels and Resveratrol-Like Compounds

    No full text
    Oxidative stress causes neural damage and inhibits essential cellular processes, such as synaptic transmission. Despite this knowledge, currently available pharmaceutical agents cannot effectively protect neural cells from acute oxidative stress elicited by strokes, heart attacks, and traumatic brain injuries in a real life clinical setting. Our lab has developed an electrophysiology protocol to identify novel drugs that protect an essential cellular process (neurotransmission) from acute oxidative stress-induced damage. Through this doctoral dissertation, we have identified three new drugs, including a Big K+ (BK) K+ channel blocker (iberiotoxin), resveratrol, and a custom made resveratrol-like compound (fly2) that protect synaptic function from oxidative stress-induced insults. Further developing these drugs as neuroprotective agents may prove transformative in protecting the human brain from acute oxidative stress elicited by strokes, heart attacks, and traumatic brain injuries. Inhibiting the protein kinase G (PKG) pathway protects neurotransmission from acute oxidative stress. This dissertation has expanded upon these findings by determining that the PKG pathway and BK K+ channels function through independent biochemical pathways to protect neurotransmission from acute oxidative stress. Taken together, this dissertation has identified two classes of compounds that protect neurotransmission from acute oxidative stress, including resveratrol-like compounds (resveratrol, fly2) and a BK K + channel inhibitor (iberiotoxin). Further developing these drugs in clinical trials may finally lead to the development of an effective neuroprotective agent

    The efficacy of gun controls

    No full text
    Thesis (M.A., Economics) -- California State University, Sacramento, 2013.Guns are used in the commission of many violent crimes and gun controls are the legislative attempt to reduce crimes by reducing access to guns. Crime has a significantly negative effect on the economic productivity of high crime areas and diminishes human capital. This study measures the efficacy of gun controls in reducing firearm homicide rates for years 2007-2011 using state level data. An index created by the Brady Campaign is used to reflect the totality of gun control legislation in each state. Evidence is found that not only are gun controls ineffective in reducing the firearm homicide rate, but may actually increase it. Due to possible endogeneity, future research should verify these results with instrumental variables.Economic

    Context-specific comparison of sleep acquisition systems in Drosophila

    No full text
    Sleep is conserved across phyla and can be measured through electrophysiological or behavioral characteristics. The fruit fly, Drosophila melanogaster, provides an excellent model for investigating the genetic and neural mechanisms that regulate sleep. Multiple systems exist for measuring fly activity, including video analysis and single-beam (SB) or multi-beam (MB) infrared (IR)-based monitoring. In this study, we compare multiple sleep parameters of individual flies using a custom-built video-based acquisition system, and commercially available SB- or MB-IR acquisition systems. We report that all three monitoring systems appear sufficiently sensitive to detect changes in sleep duration associated with diet, age, and mating status. Our data also demonstrate that MB-IR detection appeared more sensitive than the SB-IR for detecting baseline nuances in sleep architecture, while architectural changes associated with varying life-history and environment were generally detected across all acquisition types. Finally, video recording of flies in an arena allowed us to measure the effect of ambient environment on sleep. These experiments demonstrate a robust effect of arena shape and size as well as light levels on sleep duration and architecture, and highlighting the versatility of tracking-based sleep acquisition. These findings provide insight into the context-specific basis for choosing between Drosophila sleep acquisition systems, describe a novel cost-effective system for video tracking, and characterize sleep analysis using the MB-IR sleep analysis. Further, we describe a modified dark-place preference sleep assay using video tracking, confirming that flies prefer to sleep in dark locations

    Context-Specific Comparison of Sleep Acquisition Systems in Drosophila

    No full text
    Skip to Next Section Sleep is conserved across phyla and can be measured through electrophysiological or behavioral characteristics. The fruit fly, Drosophila melanogaster, provides an excellent model for investigating the genetic and neural mechanisms that regulate sleep. Multiple systems exist for measuring fly activity, including video analysis and single-beam (SB) or multi-beam (MB) infrared (IR)-based monitoring. In this study, we compare multiple sleep parameters of individual flies using a custom-built video-based acquisition system, and commercially available SB- or MB-IR acquisition systems. We report that all three monitoring systems appear sufficiently sensitive to detect changes in sleep duration associated with diet, age, and mating status. Our data also demonstrate that MB-IR detection appeared more sensitive than the SB-IR for detecting baseline nuances in sleep architecture, while architectural changes associated with varying life-history and environment were generally detected across all acquisition types. Finally, video recording of flies in an arena allowed us to measure the effect of ambient environment on sleep. These experiments demonstrate a robust effect of arena shape and size as well as light levels on sleep duration and architecture, and highlighting the versatility of tracking-based sleep acquisition. These findings provide insight into the context-specific basis for choosing between Drosophila sleep acquisition systems, describe a novel cost-effective system for video tracking, and characterize sleep analysis using the MB-IR sleep analysis. Further, we describe a modified dark-place preference sleep assay using video tracking, confirming that flies prefer to sleep in dark locations

    translin Is Required for Metabolic Regulation of Sleep

    No full text
    Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation
    corecore