72 research outputs found

    Spindle Checkpoint Silencing: PP1 Tips the Balance

    Get PDF
    The spindle checkpoint is a mitotic surveillance mechanism that delays anaphase until all sister chromatids are correctly attached to microtubules from opposite poles. Recent studies reveal that protein kinase Aurora B is a key regulator of spindle checkpoint activation whereas protein phosphatase PP1 antagonizes Aurora B and induces checkpoint silencing. Chromosome biorientation stretches the kinetochores and spatially separates centromeric Aurora B from its kinetochore substrates, comprising several PP1-interacting proteins (PIPs). The ensuing dephosphorylation of these PIPs creates docking sites for the bulk recruitment of PP1 to the kinetochores. We propose that this tension-induced targeting of PP1 triggers checkpoint silencing by the dephosphorylation of kinetochore and checkpoint components, including Aurora B substrates. In addition, PP1 also directly inactivates a kinetochore-associated pool of Aurora B and silences checkpoint signaling by opposing the centromeric targeting of Aurora B

    High-grade endometrial stromal sarcoma presenting in a 28-year-old woman during pregnancy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To the best of our knowledge, soft tissue sarcomas have not prevously been reported as a complication during pregnancy.</p> <p>Case presentation</p> <p>A 28-year-old Caucasian woman was diagnosed with a transperitoneal sarcoma during pregnancy. Morphological, immunohistochemical, chromosomal and mutational analyses pointed towards a high-grade endometrial stromal sarcoma. Although surgery and chemotherapy are possible during pregnancy, we were unable to perform these in this case.</p> <p>Conclusion</p> <p>The potential to treat gynecological cancer during pregnancy should always be assessed individually.</p

    New work on landscape and its narration

    No full text

    Temporal Paths in Real-World Sensor Networks

    No full text
    Sensor networks are used in an increasing number and variety of application areas, like traffic control or river monitoring. Sensors in these networks measure parameters of interest defined by domain experts and send these measurements to a central location for storage, viewing and analysis. Temporal graph data models, whose nodes contain time-series data reported by the sensors, have been proposed to model and analyze these networks in order to take informed and timely decisions on their operation. Temporal paths are first-class citizens in this model and some classes of them have been identified in the literature. Queries aimed at finding these paths are denoted as (temporal) path queries. In spite of these efforts, many interesting problems remain open and, in this work, we aim at answering some of them. More concretely, we characterize the classes of temporal paths that can be defined in a sensor network in terms of the well-known Allen’s temporal algebra. We also show that, out of the 8192 possible interval relations in this algebra, only 11 satisfy two desirable properties that we define: transitivity and robustness. We show how these properties and the paths that satisfy them are relevant in practice by means of a real-world use case consisting of an analysis of salinity that appears close to the Scheldt river in Flanders, Belgium, during high tides occurring in the North Sea

    The use of the oesophageal Doppler in perioperative medicine: new opportunities in research and clinical practice

    No full text
    The oesophageal Doppler (OD) is a minimally invasive haemodynamic monitor used in the surgical theatre and the ICU. Using the OD, goal-directed therapy (GDT) has been shown to reduce perioperative complications in high-risk surgical patients. However, most GDT protocols currently in use are limited to stroke volume optimisation. In the present manuscript, we examine the conceptual models behind new OD-based measurements. These would provide the clinician with a comprehensive view of haemodynamic pathophysiology; including pre-load, contractility, and afterload. Specifically, volume status could be estimated using mean systemic filling pressure (MSFP), the pressure to which all intravascular pressures equilibrate during asystole. Using the OD, MSFP could be readily estimated by simultaneous measurements of aortic blood flow and arterial pressure with sequential manoeuvres of increasing airway pressure. This would result in subsequent reductions in cardiac output and arterial pressure and would allow for a linear extrapolation of a static MSFP value to a "zero flow" state. In addition, we also demonstrate that EF is proportional to mean blood flow velocity measured in the descending thoracic aorta with the OD. Furthermore, OD-derived indexes of blood flow velocity and acceleration, as well as force and kinetic energy, can be derived and used for continuous assessment of cardiac contractility at the bedside. Using OD-derived parameters, the different components of afterload: inertia, resistance and elastance, could also be individually determined. The integration of these additional haemodynamic parameters could assist the clinician in optimising and individualising haemodynamic performance in unstable patient
    corecore