993 research outputs found
Classification and reduction of pilot error
Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses
Chemistry in a gravitationally unstable protoplanetary disc
Until now, axisymmetric, alpha-disc models have been adopted for calculations
of the chemical composition of protoplanetary discs. While this approach is
reasonable for many discs, it is not appropriate when self-gravity is
important. In this case, spiral waves and shocks cause temperature and density
variations that affect the chemistry. We have adopted a dynamical model of a
solar-mass star surrounded by a massive (0.39 Msun), self-gravitating disc,
similar to those that may be found around Class 0 and early Class I protostars,
in a study of disc chemistry. We find that for each of a number of species,
e.g. H2O, adsorption and desorption dominate the changes in the gas-phase
fractional abundance; because the desorption rates are very sensitive to
temperature, maps of the emissions from such species should reveal the
locations of shocks of varying strengths. The gas-phase fractional abundances
of some other species, e.g. CS, are also affected by gas-phase reactions,
particularly in warm shocked regions. We conclude that the dynamics of massive
discs have a strong impact on how they appear when imaged in the emission lines
of various molecular species.Comment: 10 figures and 3 tables, accepted for publication in MNRA
The fragmentation of protostellar discs: the Hill criterion for spiral arms
We present a new framework to explain the link between cooling and
fragmentation in gravitationally unstable protostellar discs. This framework
consists of a simple model for the formation of spiral arms, as well as a
criterion, based on the Hill radius, to determine if a spiral arm will
fragment. This detailed model of fragmentation is based on the results of
numerical simulations of marginally stable protostellar discs, including those
found in the literature, as well as our new suite of 3-D radiation
hydrodynamics simulations of an irradiated, optically-thick protostellar disc
surrounding an A star. Our set of simulations probes the transition to
fragmentation through a scaling of the physical opacity. This model allows us
to directly calculate the critical cooling time of Gammie (2001), with results
that are consistent with those found from numerical experiment. We demonstrate
how this model can be used to predict fragmentation in irradiated protostellar
discs. These numerical simulations, as well as the model that they motivate,
provide strong support for the hypothesis that gravitational instability is
responsible for creating systems with giant planets on wide orbits.Comment: 11 page, 10 figures, submitted to MNRA
On the accuracy of solving confluent Prony systems
In this paper we consider several nonlinear systems of algebraic equations
which can be called "Prony-type". These systems arise in various reconstruction
problems in several branches of theoretical and applied mathematics, such as
frequency estimation and nonlinear Fourier inversion. Consequently, the
question of stability of solution with respect to errors in the right-hand side
becomes critical for the success of any particular application. We investigate
the question of "maximal possible accuracy" of solving Prony-type systems,
putting stress on the "local" behavior which approximates situations with low
absolute measurement error. The accuracy estimates are formulated in very
simple geometric terms, shedding some light on the structure of the problem.
Numerical tests suggest that "global" solution techniques such as Prony's
algorithm and ESPRIT method are suboptimal when compared to this theoretical
"best local" behavior
Short-lived synchrotron-induced radioactivities
The use of a scintillation spectrometer for measurement of the energy distribution and half-life of short-lived beta-emitters is described. The instrumentation is especially suited for use with radioactivities of low intensity resulting from photonuclear reactions produced by the Iowa State College 70-Mev synchrotron. Such activities are unsuited for study with a conventional magnetic spectrometer of small solid angle, particularly if the activities are short-lived, but may readily be analyzed with a scintillation spectrometer, for which the solid angle of acceptance is close to 50 per cent
3D Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results
Recent three-dimensional radiative hydrodynamics simulations of
protoplanetary disks report disparate disk behaviors, and these differences
involve the importance of convection to disk cooling, the dependence of disk
cooling on metallicity, and the stability of disks against fragmentation and
clump formation. To guarantee trustworthy results, a radiative physics
algorithm must demonstrate the capability to handle both the high and low
optical depth regimes. We develop a test suite that can be used to demonstrate
an algorithm's ability to relax to known analytic flux and temperature
distributions, to follow a contracting slab, and to inhibit or permit
convection appropriately. We then show that the radiative algorithm employed by
Meji\'a (2004) and Boley et al. (2006) and the algorithm employed by Cai et al.
(2006) and Cai et al. (2007, in prep.) pass these tests with reasonable
accuracy. In addition, we discuss a new algorithm that couples flux-limited
diffusion with vertical rays, we apply the test suite, and we discuss the
results of evolving the Boley et al. (2006) disk with this new routine.
Although the outcome is significantly different in detail with the new
algorithm, we obtain the same qualitative answers. Our disk does not cool fast
due to convection, and it is stable to fragmentation. We find an effective
. In addition, transport is dominated by low-order
modes.Comment: Submitted to Ap
Simulated Observations of Young Gravitationally Unstable Protoplanetary Discs
The formation and earliest stages of protoplanetary discs remain poorly
constrained by observations. ALMA will soon revolutionise this field.
Therefore, it is important to provide predictions which will be valuable for
the interpretation of future high sensitivity and high angular resolution
observations. Here we present simulated ALMA observations based on radiative
transfer modelling of a relatively massive (0.39 M_solar) self-gravitating disc
embedded in a 10 M_solar dense core, with structure similar to the pre-stellar
core L1544. We focus on simple species and conclude that C17O 3-2, HCO+ 3-2,
OCS 26-25 and H2CO 404-303 lines can be used to probe the disc structure and
kinematics at all scales.Comment: 12 pages, 15 figures, Accepted by MNRA
Numerical determination of the material properties of porous dust cakes
The formation of planetesimals requires the growth of dust particles through
collisions. Micron-sized particles must grow by many orders of magnitude in
mass. In order to understand and model the processes during this growth, the
mechanical properties, and the interaction cross sections of aggregates with
surrounding gas must be well understood. Recent advances in experimental
(laboratory) studies now provide the background for pushing numerical aggregate
models onto a new level. We present the calibration of a previously tested
model of aggregate dynamics. We use plastic deformation of surface asperities
as the physical model to bring critical velocities for sticking into accordance
with experimental results. The modified code is then used to compute
compression strength and the velocity of sound in the aggregate at different
densities. We compare these predictions with experimental results and conclude
that the new code is capable of studying the properties of small aggregates.Comment: Accepted for publication in A&
- …