1,382 research outputs found

    Eco-design actions to improve life cycle environmental performance of face masks in the pandemic era

    Get PDF
    Face masks are currently considered essential devices that people must wear today and in the near future, until the COVID-19 pandemic will be completely defeated through specific medicines and vaccines. Such devices are generally made of thermoplastic polymers, as polypropylene and polyethylene and are single use products. Even if in this period the sanitary emergency must have the maximum priority, the world society should not completely forget the environmental problem that are causing more and more obvious climate changes with correlated damages to ecosystems and human health. Despite the well-known correlation among anti-COVID protective equipment (or more generally medical devices) and environmental issues, the Life Cycle Assessment (LCA) and eco-design-based studies in this field is very scarce. The present study aims to derive the most important environmental criticalities of such products, by using LCA and product circularity indicators of five different common masks. The final aim is to provide eco-design guidelines, useful to design new face masks by preventing negative impact on the environment

    Pharmacokinetic Appraisal of Carprofen Delivery from Intra-Articular Nanoparticles: A Population Modeling Approach in Rabbits

    Get PDF
    Osteoarthritis is frequently treated in veterinary settings with non-steroidal anti-inflammatory drugs (NSAID) such as carprofen (CP). Its action over the articular cartilage can be enhanced by increasing drug uptake into the cartilage, alongside its site of action, and anticipating its rapid distribution towards the bloodstream. A pharmacokinetic study to evaluate carprofen nanoparticles (NP) after intraarticular administration (IA) in rabbits was performed through a modeling allometric approach. The pharmacokinetic analysis of plasma profiles showed a rapid CP distribution outwards the synovial chamber but mainly remaining in plasma (Vc = 0.14 L/5 Kg), according to its high protein-binding. The absorption data modeling showed the occurrence of two different release–absorption rate processes after nanoparticle administration in the synovial space, i.e., a fast rate process causing a burst effect and involving the 59.5% of the total CP absorbed amount and a slow rate process, involving 40.5%. Interestingly, the CP burst effect inside the joint space enhances its diffusion towards cartilage resulting in CP accumulation in about three times higher concentrations than in plasma. In line with these results, the normalized-by-dose area under the concentration vs. time curve (AUC) values after IA were 80% lower than those observed after the intravenous. Moreover, the slower slope of the concentration–time terminal phase after IA administration vs. intravenous (IV) suggested a flip-flop phenomenon (0.35 h-1 vs. 0.19 h-1). Notably, CP clearances are predictive of the pharmacokinetic (PK) profile of CP in healthy humans (0.14 L/h/5 kg vs. 2.92 L/h/70 kg) although an over-estimation has been detected for cats or dogs (10 times and 4 times, respectively). This fact could probably be attributed to inter-species metabolic differences. In summary, despite the limited number of animals used, this study shows that the rabbit model could be suitable for a predictive evaluation of the release enhancement of CP-NP towards the biophase in arthritic diseases not due to sterical retention of the formulation

    A Light Calibration System for the ProtoDUNE-DP Detector

    Full text link
    A LED-based fiber calibration system for the ProtoDUNE-Dual Phase (DP) photon detection system (PDS) has been designed and validated. ProtoDUNE-DP is a 6x6x6 m3 liquid argon time-projection-chamber currently being installed at the Neutrino Platform at CERN. The PDS is based on 36 8-inch photomultiplier tubes (PMTs) and will allow triggering on cosmic rays. The system serves as prototype for the PDS of the final DUNE DP far detector in which the PDS also has the function to allow the 3D event reconstruction on non-beam physics. For this purpose an equalized PMT response is desirable to allow using the same threshold definition for all PMT groups, simplifying the determination of the trigger efficiency. The light calibration system described in this paper is developed to provide this and to monitor the PMT performance in-situ.Comment: 15 pages, 5 figure

    Influencia de la estructura y usos del suelo en las características de retención hídrica de suelos mediterráneos sobre litología caliza

    Get PDF
    [Resumen] Se investigan las diferencias entre la capacidad de retención hídrica de suelos mediterráneos sobre litología caliza sometidos a diferentes usos: incendiados y bajo pastoreo intensivo. En estos mismos suelos se valoran las relaciones entre estructura del suelo y capacidad de retención hídrica a diversos puntos de la curva de retención. Agregados de pequeño tamaño y materia orgánica influyen positivamente y de manera considerable en la capacidad de retención en casi todos los puntos de la curva de retención determinados. Agregados de gran tamaño y microagregados estables en agua influyen negativamente. La combinación de agregados de tamaño 1-0,105 mm y el contenido en materia orgánica predicen bastante bien la capacidad de retención a niveles bajos de succión (pF 0,4 YpF 1).[Abstract] The differences between the water holding capacity of Mediterranean soils developed on limestones and under different land uses (burnt and overgrazed soils) are investigated. The relationships between soil structure and soil moisture characteristic at different levels of the water retention curve in these same soils are evaluated. Organic matter and small sized aggregates are positively related to the water holding capacity. Large sized aggregates and waterstable microaggregates are negatively related to the water holding capacity of the soils. The combination of aggregates at 1-0,105 mm and organic matter content predict quite well the water retention capacity at lower suction levels (pF 0,4 and pF 1)

    Carprofen Permeation Test through Porcine Ex VivoMucous Membranes and Ophthalmic Tissues forTolerability Assessments: Validation andHistological Study

    Get PDF
    Carprofen (CP), a non-steroidal anti-inflammatory drug (NSAID), is profusely used in veterinary medicine for its analgesic and anti-inflammatory activity. Some undesirable effects are associated with its systemic administration. Alternative local routes are especially useful to facilitate its administration in animals. The main aim of this paper is to validate the suitability of ex vivo permeation experiments of CP with porcine mucous membranes (buccal, sublingual and vaginal) and ophthalmic tissues (cornea, sclera and conjunctiva) intended to be representative of naïve in vivo conditions. Chromatographic analysis of CP in membrane-permeated samples and drug-retained have been validated following standard bioanalytical guidelines. Then, recovery levels of drugs in tissue samples were assessed with aqueous phosphate buffered saline (PBS) buffer to preserve the histological integrity. Finally, as a proof of concept, a series of CP permeation tests in vertical Franz diffusion cells has been performed to evaluate permeation flux and permeability constants in all tissues, followed by a histological study for critical evaluation. Furthermore, synthetic tissue retention-like samples were prepared to verify the value of this experimental study. Results show linear relationships with good determination coefficient (R2 > 0.998 and R2 > 0.999) in the range of 0.78 to 6.25 mg/mL and 3.125 mg/mL to 100 mg/mL, respectively. Low limits of quantification around 0.40 µg/mL were allowed to follow permeation levels until a minimum of 0.40% of the locally-applied dose. This method showed a good accuracy and precision with values lower than 2%. After the recovery technique, reproducible values below 30% were achieved in all tissues, suggesting it is a non-damaging method with low efficiency that requires the use of further solvents to enhance the extraction percentages. After permeation and histology tests, no relevant peak interferences were detected, and no cell or tissue damage was found in any tissue. In conclusion, results demonstrate the suitability of this test to quantify the distribution of CP with good histological tolerability

    Fluvial geomorphological dynamics and land use changes: impact on the organic carbon stocks of soil and sediment

    Get PDF
    The drainage basin of the Turrilla river (SE of Spain) went through important land cover changes since 1950s; from mainly an agrarian scenario in 1956 to other depopulated and forested in 2015. This study analyzes the effects of land use changes on fluvial dynamics and their relationship with the organic carbon (OC) stock in fluvial sedimentary deposits as well as in the soil of the basin. Methods included a fluvial geomorphological analysis and a land use change analysis in combination with OC databases of soil and sediment. Results showed that the fluvial channel experienced important morphological changes related to different erosion processes and stabilization of fluvial deposits, induced by land use changes in the drainage area. The active channel decreased 63% in the study period, while bank erosion and gully erosion increased (34% and 21 %, respectively). Alluvial fans and alluvial plain were also extended (21% and 7 %, respectively) and alluvial bars were colonized by vegetation. Sediment was impoverished in OC compared to catchment soils (0.24 enrichment ratio sediment/soil). However the increase of OC stock (Mg ha-1) was very similar between soil (25 %) and sediment (23 %). The total reservoir of OC (Mg) increased 27% in sediments and 25% in the catchment soils. Results show the large influence of geomorphological dynamics on the OC reservoir at the catchment scale. A very high potential of fluvial sediments to increase OC sinks was observed, particularly in scenarios where the active channel is narrowed and the fluvial channel is encroached with vegetation, facilitating the input of OC in sediment. The potential of sediment to sequester organic carbon could be very useful in planning and management of fluvial sedimentary zones in climate change mitigation policies. © 2019, Universidad Austral de Chile. All rights reserved.Este estudio ha recibido apoyo financiero del proyecto DISECO (CGL2014-55405-R) del Plan Nacional de Ciencia del Ministerio de Economía y Competitividad de España, del proyecto SOGLO (P7/24 IAP BELSPO) del gobierno de Bélgica. AHM recibió apoyo financiero para una estancia en la Universidad Nacional de Córdoba (Argentina) del Banco de Santander mediante el Convenio Becas de Intercambio Latinoamérica (Programa ILA). CBF recibió apoyo financiero para dos estancias en el extranjero del programa Salvador de Madariaga 2017 (Ministerio de Educación, Cultura y Deporte, Gobierno de España) y del programa Jiménez de la Espada 2017 (Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia). MAB fue parcialmente financiada por un contrato Juan de la Cierva-Incorporación (Ref: IJCI-2015-23500). Todas estas estancias permitieron el trabajo continuado en la redacción de este artículo

    Incision and width changes caused by dam removal. Experiments and data analysis

    Get PDF
    River morphodynamics and sediment transportRiver morphology and morphodynamic

    Eco-geomorphological connectivity and coupling interactions at hillslope scale in drylands: Concepts and critical examples

    Get PDF
    The diagnosis of land degradation requires a deep understanding of ecosystem functioning and evolution. In dryland systems, in particular, research efforts must address the redistribution of scarce resources for vegetation, in a context of high spatial heterogeneity and non-linear response. This fact explains the prevalence of eco-hydrological perspectives interested in runoff processes and, the more recent, focused on connectivity as an indicator of system resource optimisation. From a geomorphological perspective and reviewing the concepts of eco-hydro-geomorphological interactions operating in ecosystems, this paper explores the effects of erosion on vegetation configuration through two case studies at different spatio-temporal scales. We focus on the structure-function linkage, specifically on how morphological traits relate with different stages in the erosional sequence, both in the abiotic and the biotic domain. Results suggest that vegetation dynamics are affected by structural boundary conditions at both scales, i.e. by surface armouring related with rock fragments at the patch scale, and by the degree of hillslope-channel coupling at the hillslope scale. Our preliminary results can serve as new working hypotheses about the structure-function interplay on hillslopes. All this, taking advantage of the recent technological achievements for acquiring very high-resolution geospatial data that offer new analytical possibilities in a range of scales

    Oxygen doping-induced photogeneration loss in P3HT:PCBM solar cells

    Get PDF
    This work investigates the loss in performance induced by molecular oxygen in bulk heterojunction solar cells. We observe that upon exposure to molecular oxygen both formation of P3HT+:O2− complex and metal oxidation at the interface between the active layer and metallic contact occur. These two different effects were separately investigated using NOBF4 as an oxidant. Our procedure has allowed studying p-doping of the active layer independently from contact degradation. A loss in photocurrent is associated with formation of P3HT+:O2− complex, which reduces the concentration of neutral P3HT present in the film in accordance with absorption and external quantum efficiency spectra. This complex is regarded as a source of a pathway of reversible degradation. Capacitance–voltage measurements allow for an accurate extraction of p-doping levels of the active layer produced by the presence of charged O2− species. In addition, one of the irreversible degradation pathways is identified to be oxidation of the metallic contact to form CaO. This oxide forms a thin dipole layer producing a voltage drop across the active layer/Ca interface, which has a direct impact on the open circuit voltage and fill factor

    Environmental effects of using different construction codes applied to reinforced concrete beam designs based on Model Code 2010 and Spanish Standard EHE-08

    Get PDF
    Assuming specific behavior models, the variety of design codes currently used for the design of concrete beams inevitably results in different solutions, ensuring service during the expected lifetime with a maximum functional quality and safety. However, from a sustainable design perspective, such differences may have remarkable environmental impacts. This paper analyses if the approach of the newest design code, i.e., the Model Code, leads to a reduction in resource consumption and greenhouse gas emissions (GHG) over the life cycle of concrete beams. To do so, a comparative analysis of the environmental impact of concrete beams was carried out depending on the reference code used for their design (i.e., EHE-08 or Model Code). The results show that reducing the amount of reinforcing steel is essential to minimize the life cycle environmental impacts of concrete beams. Every country may have its own design codes and, thus, the reinforcing steel use can vary for structures subjected to the same loads and with equivalent structural reliability. Hence, regulations play a key role in the sustainability of construction assets. Conclusions depend on the beam’s length (L), height (h) and characteristic compressive strength (fck). For short beams (4 m), the greater the h, the greater the reinforcement difference between the two codes. With regard to beams with L = 8 m, these differences can lead to varying steel and GHG savings, e.g., up to 5.0 % with MC-2010 (h = 0.6 m and fck = 35 MPa), almost 40 % with EHE – 08 (h = 0.6 m and 35 MPa < fck = 50 MPa) and more than 30 % with MC-2010 (h = 1.0 m).. For long beams (L = 12.0 m), steel consumption is 0.3 % to 19 % lower when the beam is designed with EHE-08, and this difference decreases as fck increases.Peer ReviewedPostprint (author's final draft
    corecore