6 research outputs found

    Chamaecyparis obtusa

    Get PDF
    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans

    Dyeing Performance and Anti-Superbacterial Activity of Cotton Fabrics Dyed with <i>Chamaecyparis obtusa</i>

    No full text
    In hospitals, doctors’ and patients’ uniforms, as well as bedding and textiles, can be carriers of superbacteria. This study was conducted to test the anti-superbacterial activity of cotton fabrics dyed with extracts of Chamaecyparis obtusa (C. obtusa). The dye was extracted by boiling C. obtusa in water. The test cotton was mordant-dyed three times with the solution at a 1:17 dyeing bath ratio and at an 8.69% (o.w.f) dye concentration for 15 min at 40 °C. C. obtusa dyeing demonstrated a high dyeing affinity in the absence of mordant (K/S value = 14.62). The K/S value of the dyed fabric increased in the order of Cu-mordanted, Fe-mordanted, non-mordanted, and Al-mordanted cotton. Dry cleaning, perspiration and rubbing fastness were determined to be good (Grade 4–5). The dyed fabrics appeared to have a high deodorizing ability compared to the control fabric. They showed not only antibacterial activity against Staphylococcus aureus (S. aureus) and Klebsiella pneumoniae (K. pneumoniae), known to be frequently found in fabrics, but also higher antibacterial activity against the superbacteria methicillin-resistant Staphylococcus aureus (MRSA) (reduced by 99.7%). These results suggest that fabric dyed with C. obtusa extract may be used in clothes and bed linens for inpatients, given its high anti-superbacterial activity. Furthermore, such fabrics may contribute to inhibiting pathogenic infections when used in hospital uniforms or operation gowns for doctors or nurses in hospitals

    Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse

    Get PDF
    Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity

    Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse

    No full text
    corecore