19 research outputs found
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Synchrony Detection by Analogue VLSI Neurons with Bimodal STDP Synapses
We present test results from spike-timing correlation learning experiments carried out with silicon neurons with STDP (Spike Timing Dependent Plasticity) synapses. The weight change scheme of the STDP synapses can be set to either weight-independent or weight-dependent mode. We present results that characterise the learning window implemented for both modes of operation. When presented with spike trains with di#erent types of synchronisation the neurons develop bimodal weight distributions. We also show that a 2-layered network of silicon spiking neurons with STDP synapses can perform hierarchical synchrony detection
Neural Hardware: beyond ones and zeros
Abstract. An overview of research on the implementation of neural systems is presented in this paper. We focus on implementations where the algorithms and their physical support are tightly coupled. First, we concentrate on the potential of probabilistic algorithms to compensate for hardware non-idealities. Then, electronic circuits which aim to reproduce the structure of neurobiological systems in hardware are introduced. Finally, we extend to neuroengineering whose focus is placed on interfacing artificial devices with biological systems.
A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity
Current advances in neuromorphic engineering have made it possible to emulate complex neuronal ion channel and intracellular ionic dynamics in real time using highly compact and power-efficient complementary metal-oxide-semiconductor (CMOS) analog very-large-scale-integrated circuit technology. Recently, there has been growing interest in the neuromorphic emulation of the spike-timing-dependent plasticity (STDP) Hebbian learning rule by phenomenological modeling using CMOS, memristor or other analog devices. Here, we propose a CMOS circuit implementation of a biophysically grounded neuromorphic (iono-neuromorphic) model of synaptic plasticity that is capable of capturing both the spike rate-dependent plasticity (SRDP, of the Bienenstock-Cooper-Munro or BCM type) and STDP rules. The iono-neuromorphic model reproduces bidirectional synaptic changes with NMDA receptor-dependent and intracellular calcium-mediated long-term potentiation or long-term depression assuming retrograde endocannabinoid signaling as a second coincidence detector. Changes in excitatory or inhibitory synaptic weights are registered and stored in a nonvolatile and compact digital format analogous to the discrete insertion and removal of AMPA or GABA receptor channels. The versatile Hebbian synapse device is applicable to a variety of neuroprosthesis, brain-machine interface, neurorobotics, neuromimetic computation, machine learning, and neural-inspired adaptive control problems