19 research outputs found

    Modern studies of the resources of fossil mammoth tusks in the Arctic zone of Yakutia (northeast Siberia, Russia)

    Get PDF
    Mammoth tusk is an important material for the economy of the Republic of Sakha (Yakutia), in which bone carving is historically widespread. In addition, in recent decades, Yakutia is the largest exporter of mammoth tusks abroad. The Arctic part of Yakutia is the only region of Russia and the World where a long and steady mining of fossil mammoth bones and tusks has taken place. In this regard, the question of assessing the resources of the mammoth tusks in the Arctic zone of Yakutia is actual. To calculate the annual collection amounts of the mammoth tusks in the Arctic zone of Yakutia, we used various sources. In order to determine the prognostic resources of the mammoth tusks in the Arctic zone of Yakutia, we calculated the area of Yedoma sediments, containg the mammoth tusks. According to recent estimates, based on new data on the melting of Yedoma sediments in the north of Yakutia and the level of collection of mammoth tusks in last years, Yedoma sediments in the Arctic zone of Yakutia can contain from 143, 539.03 to 170,220.7 tons of mammoth tusks. These calculations are very rough, but in general they are very close to the results of our previous calculations (maximum about 140 thousand tons) and calculations of other researchers (N. Vereshchagin - 150 thousand tons, A. Smirnov - 184 thousand tons). Thus, Yedoma sediments of Northern Yakutia can contain from 140 thousand tons to almost 200 thousand tons of mammoth tusks. Large amount of this valuable raw material can play a significant economic role for the Republic of Sakha (Yakutia)in future

    Northernmost record of the Merck's rhinoceros Stephanorhinus kirchbergensis (Jäger) and taxonomic status of Coelodonta jacuticus Russanov (Mammalia, Rhinocerotidae)

    Get PDF
    A lower jaw of Stephanorhinus kirchbergensis from the Mus Khaya locality on the Yana River in Yakutia is described. This jaw was previously designated as a paratype of Coelodonta jacuticus, but morphological and morphometric analysis has shown that it actually belongs to a typical S. kirchbergensis. Morphometric parameters of the holotype (skull) of C. jacuticus fall within the range of intraspecific variation of C. antiquitatis. The same results of a morphometric study were obtained for the subspecies Coelodonta antiquitatis pristinus and C. a. humilis. This suggests that C. jacuticus, Coelodonta antiquitatis pristinus, and C. a. humilis are invalid taxa which should be regarded as junior synonyms of C. antiquitatis. The find of S. kirchbergensis in northern Yakutia is the northernmost occurrence of this species

    New records of Holocene polar bear and walrus (Carnivora) in the Russian Arctic

    Get PDF
    This article discusses recent finds of Holocene polar bear and walrus from the northern regions of Russia. The ulna of a polar bear was found on Vaygach Island and radiocarbon dated to 1,971 +/- 25 BP (OxA-23631). This calibrates to 430-540 AD, taking into account the marine reservoir effect. The size of the bone is similar to that of a recent Ursus maritimus. The locality of the fossil bone is within the modern species range, which developed about two millennia ago. In 2014 a walrus tusk was found on the coast of New Siberia Island and is radiocarbon dated to 5,065 +/- 35 BP (GrA-62452). This calibrates to 3,510-3,370 BC, taking into account the marine reservoir effect. Its size and morphology are identical to that of an adult male of the subspecies Odobenus rosmarus laptevi. This subspecies populates the eastern parts of the Kara Sea, the entire Laptev Sea and the western parts of the East Siberian Sea. This new discovery could mean that populations of O. rosmarus laptevi inhabited the waters near the New Siberian Islands during the Middle Holocene, and that the present-day coastline of the Siberian Arctic Islands was already formed at that time

    Evolutionary history and palaeoecology of brown bear in North-East Siberia re-examined using ancient DNA and stable isotopes from skeletal remains

    Get PDF
    Over 60% of the modern distribution range of brown bears falls within Russia, yet palaeoecological data from the region remain scarce. Complete modern Russian brown bear mitogenomes are abundant in the published literature, yet examples of their ancient counterparts are absent. Similarly, there is only limited stable isotopic data of prehistoric brown bears from the region. We used ancient DNA and stable carbon (δ13C) and nitrogen (δ15N) isotopes retrieved from five Pleistocene Yakutian brown bears (one Middle Pleistocene and four Late Pleistocene), to elucidate the evolutionary history and palaeoecology of the species in the region. We were able to reconstruct the complete mitogenome of one of the Late Pleistocene specimens, but we were unable to assign it to any of the previously published brown bear mitogenome clades. A subsequent analysis of published mtDNA control region sequences, which included sequences of extinct clades from other geographic regions, assigned the ancient Yakutian bear to the extinct clade 3c; a clade previously identified from Late Quaternary specimens from Eastern Beringia and Northern Spain. Our analyses of stable isotopes showed relatively high δ15N values in the Pleistocene Yakutian brown bears, suggesting a more carnivorous diet than contemporary brown bears from Eastern Beringia

    Diversity of muskox Ovibos moschatus (Zimmerman, 1780) (Bovidae, Mammalia) in time and space based on cranial morphometry

    Get PDF
    Muskox Ovibos moschatus is a Pleistocene relic, which has survived only in North America and Greenland. During the Pleistocene, it was widely distributed in Eurasia and North America. To evaluate its morphological variability through time and space, we conducted an extensive morphometric study of 217 Praeovibos and Ovibos skull remains. The analyses showed that the skulls grew progressively wider from Praeovibos sp. to the Pleistocene O. moschatus, while from the Pleistocene to the recent O. moschatus, the facial regions of the skull turned narrower and shorter. We also noticed significant geographic differences between the various Pleistocene Ovibos crania. Siberian skulls were usually larger than those from Western and Central Europe. Eastern Europeanmuskoxen also exceeded in size those from the other regions of Europe. The large size of Late Pleistocene muskoxen from regions located in more continental climatic regimes was probably associated with the presence of more suitable food resources in steppe-tundra settings. Consistently, radiocarbon-dated records of this species are more numerous in colder periods, when the steppe-tundra was widely spread, and less abundant in warmer periods

    The origins and spread of domestic horses from the Western Eurasian steppes

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed fastq format through the European Nucleotide Archive under accession number PRJEB44430, together with rescaled and trimmed bam sequence alignments against both the nuclear and mitochondrial horse reference genomes. Previously published ancient data used in this study are available under accession numbers PRJEB7537, PRJEB10098, PRJEB10854, PRJEB22390 and PRJEB31613, and detailed in Supplementary Table 1. The genomes of ten modern horses, publicly available, were also accessed as indicated in their corresponding original publications57,61,85-87.NOTE: see the published version available via the DOI in this record for the full list of authorsDomestication of horses fundamentally transformed long-range mobility and warfare. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling at Botai, Central Asia around 3500 BC. Other longstanding candidate regions for horse domestication, such as Iberia and Anatolia, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC driving the spread of Indo-European languages. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture

    Northernmost record of the Merck's rhinoceros Stephanorhinus kirchbergensis (Jäger) and taxonomic status of Coelodonta jacuticus Russanov (Mammalia, Rhinocerotidae)

    No full text
    A lower jaw of Stephanorhinus kirchbergensis from the Mus Khaya locality on the Yana River in Yakutia is described. This jaw was previously designated as a paratype of Coelodonta jacuticus, but morphological and morphometric analysis has shown that it actually belongs to a typical S. kirchbergensis. Morphometric parameters of the holotype (skull) of C. jacuticus fall within the range of intraspecific variation of C. antiquitatis. The same results of a morphometric study were obtained for the subspecies Coelodonta antiquitatis pristinus and C. a. humilis. This suggests that C. jacuticus, Coelodonta antiquitatis pristinus, and C. a. humilis are invalid taxa which should be regarded as junior synonyms of C. antiquitatis. The find of S. kirchbergensis in northern Yakutia is the northernmost occurrence of this species

    Chronology and faunal remains of the Khayrgas Cave (Eastern Siberia, Russia)

    No full text
    The Khayrgas Cave in Yakutia (eastern Siberia) is one of the most important Upper Paleolithic sites in northern Asia, and has been the subject of extensive 14C dating and study of mammal bones. The upper part of the cave sequence (Layers 2–4) dates to the Holocene (~4100–8200 BP), and the lower part (Layers 5–7) to the Late Pleistocene (~13,100–21,500 BP). In Layers 2–4, only extant animal species are known; ecologically they belong to a forest-type ecosystem. In Layers 5–7, several extinct species were identified, and the environment at that time corresponded to open and semi-open ecosystems. The Khayrgas Cave provides rare but reliable evidence of human occupation in the deep continental region of eastern Siberia at the Last Glacial Maximum, ~20,700–21,500 BP

    Chronology and faunal remains of the Khayrgas Cave (Eastern Siberia, Russia)

    No full text
    The Khayrgas Cave in Yakutia (eastern Siberia) is one of the most important Upper Paleolithic sites in northern Asia, and has been the subject of extensive 14C dating and study of mammal bones. The upper part of the cave sequence (Layers 2–4) dates to the Holocene (~4100–8200 BP), and the lower part (Layers 5–7) to the Late Pleistocene (~13,100–21,500 BP). In Layers 2–4, only extant animal species are known; ecologically they belong to a forest-type ecosystem. In Layers 5–7, several extinct species were identified, and the environment at that time corresponded to open and semi-open ecosystems. The Khayrgas Cave provides rare but reliable evidence of human occupation in the deep continental region of eastern Siberia at the Last Glacial Maximum, ~20,700–21,500 BP
    corecore