236 research outputs found

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 Β± 0.01 eV, 12.30 Β± 0.02 eV and 11.23 Β± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, βˆ†fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 Β± 2.1, 601.6 Β± 2.7, 890.3 Β± 2.2, 849.8 Β± 3.2, 701.2 Β± 3.3 and 552.2 Β± 3.4 kJ mol–1, respectively. The βˆ†fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 Β± 3.2, –446.6 Β± 2.7, –702.1 Β± 3.5, –487.8 Β± 3.4 and –285.2 Β± 3.2 kJ mol–1, respectively

    Litter aeration and spread of Salmonella in broilers

    Get PDF
    Litter quality in the poultry sector is one of the main parameters of health, productivity, and animal welfare. Therefore, innovative management methods have been developed to improve the quality of litter. One of them is litter aeration (LA) by tumbling. However, there is little information related to the effect of this technique on the spreading of pathogens of public health importance such as Salmonella. In this context, the objective of this study was to determine the epidemiology of Salmonella in poultry farms, when serial LA were implemented during the rearing cycle of broilers. For this purpose, an experimental broiler farm with 3 identical rooms was used in the study. Two rooms were assigned to the LA treatment, and the other one served as the control room. Environmental samples were taken in poultry houses after LA in 4 consecutive weeks at the end of the cycle. All samples collected were analyzed according to the standards of the International Organization for Standardization (ISO 6579:2002, Annex D). The results of this study showed that in the control and treated rooms, the percentage of positive samples for Salmonella decreased in the first 3 LA sessions (LA 1, LA 2, and LA 3). However, in the last LA session of rearing (LA 4), the percentage of positive samples increased from 8.2 to 33.2% in the control room instead the treated rooms where the positive samples decreased (P = 0.017). Thus, the aeration of the litter as litter management technique in poultry broiler production does not increase the shedding or the spread of Salmonella throughout broiler houses. In addition, it could be an effective technique to reduce the infective pressure of this bacterium in several areas of the farm or in certain moments of the rearing period with more risk of multiplication and spreading of Salmonella

    m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination

    Get PDF
    N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins1, 2, 3, 4, 5, 6, 7. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir)8, 9, 10, 11, 12. In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl)13. However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain3. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models5, 7, 14, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is because m6A is required for female-specific alternative splicing of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal 2 (msl-2) to prevent dosage compensation in females. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies Ime4 mutants. Loss of m6A also affects alternative splicing of additional genes, predominantly in the 5β€² untranslated region, and has global effects on the expression of metabolic genes. The requirement of m6A and its reader YT521-B for female-specific Sxl alternative splicing reveals that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression

    Chiral corrections to the SU(2)Γ—SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner relation

    Get PDF
    The next to leading order chiral corrections to the SU(2)Γ—SU(2)SU(2)\times SU(2) Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, δπ\delta_\pi, the value δπ=(6.2,Β±1.6)\delta_\pi = (6.2, \pm 1.6)%. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate β‰ƒβ‰‘βˆ£2 GeV=(βˆ’267Β±5MeV)3 \simeq \equiv |_{2\,\mathrm{GeV}} = (- 267 \pm 5 MeV)^3. As a byproduct, the chiral perturbation theory (unphysical) low energy constant H2rH^r_2 is predicted to be H2r(Ξ½Ο‡=Mρ)=βˆ’(5.1Β±1.8)Γ—10βˆ’3H^r_2 (\nu_\chi = M_\rho) = - (5.1 \pm 1.8)\times 10^{-3}, or H2r(Ξ½Ο‡=MΞ·)=βˆ’(5.7Β±2.0)Γ—10βˆ’3H^r_2 (\nu_\chi = M_\eta) = - (5.7 \pm 2.0)\times 10^{-3}.Comment: A comment about the value of the strong coupling has been added at the end of Section 4. No change in results or conslusion

    Dilated Cardiomyopathy with Increased SR Ca2+ Loading Preceded by a Hypercontractile State and Diastolic Failure in the Ξ±1CTG Mouse

    Get PDF
    Mice over-expressing the Ξ±1βˆ’subunit (pore) of the L-type Ca2+ channel (Ξ±1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8–11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2–4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models

    RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast

    Get PDF
    For the yeast Saccharomyces cerevisiae, nutrient limitation is a key developmental signal causing diploid cells to switch from yeast-form budding to either foraging pseudohyphal (PH) growth or meiosis and sporulation. Prolonged starvation leads to lineage restriction, such that cells exiting meiotic prophase are committed to complete sporulation even if nutrients are restored. Here, we have identified an earlier commitment point in the starvation program. After this point, cells, returned to nutrient-rich medium, entered a form of synchronous PH development that was morphologically and genetically indistinguishable from starvation-induced PH growth. We show that lineage restriction during this time was, in part, dependent on the mRNA methyltransferase activity of Ime4, which played separable roles in meiotic induction and suppression of the PH program. Normal levels of meiotic mRNA methylation required the catalytic domain of Ime4, as well as two meiotic proteins, Mum2 and Slz1, which interacted and co-immunoprecipitated with Ime4. This MIS complex (Mum2, Ime4, and Slz1) functioned in both starvation pathways. Together, our results support the notion that the yeast starvation response is an extended process that progressively restricts cell fate and reveal a broad role of post-transcriptional RNA methylation in these decisions

    The effect of adenosine monophosphate deaminase overexpression on the accumulation of umami-related metabolites in tomatoes

    Get PDF
    Taste is perceived as one of a combination of five sensations, sweet, sour, bitter, salty, and umami. The umami taste is best known as a savoury sensation and plays a central role in food flavour, palatability, and eating satisfaction. Umami flavour can be imparted by the presence of glutamate and is greatly enhanced by the addition of ribonucleotides, such as inosine monophosphate (IMP) and guanosine monophosphate (GMP). The production of IMP is regulated by the enzyme adenosine monophosphate (AMP) deaminase which functions to convert AMP into IMP. We have generated transgenic tomato (Solanum lycopersicum) lines over expressing AMP deaminase under the control of a fruit-specific promoter. The transgenic lines showed substantially enhanced levels of AMP deaminase expression in comparison to the wild-type control. Elevated AMP deaminase levels resulted in the reduced accumulation of glutamate and increased levels of the umami nucleotide GMP. AMP concentrations were unchanged. The effects on the levels of glutamate and GMP were unexpected and are discussed in relation to the metabolite flux within this pathway

    A Genome-Wide Approach to Discovery of Small RNAs Involved in Regulation of Virulence in Vibrio cholerae

    Get PDF
    Small RNAs (sRNAs) are becoming increasingly recognized as important regulators in bacteria. To investigate the contribution of sRNA mediated regulation to virulence in Vibrio cholerae, we performed high throughput sequencing of cDNA generated from sRNA transcripts isolated from a strain ectopically expressing ToxT, the major transcriptional regulator within the virulence gene regulon. We compared this data set with ToxT binding sites determined by pulldown and deep sequencing to identify sRNA promoters directly controlled by ToxT. Analysis of the resulting transcripts with ToxT binding sites in cis revealed two sRNAs within the Vibrio Pathogenicity Island. When deletions of these sRNAs were made and the resulting strains were competed against the parental strain in the infant mouse model of V. cholerae colonization, one, TarB, displayed a variable colonization phenotype dependent on its physiological state at the time of inoculation. We identified a target of TarB as the mRNA for the secreted colonization factor, TcpF. We verified negative regulation of TcpF expression by TarB and, using point mutations that disrupted interaction between TarB and tpcF mRNA, showed that loss of this negative regulation was primarily responsible for the colonization phenotype observed in the TarB deletion mutant
    • …
    corecore