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Abstract. The following results are presented from the development and application of TEMPEST, a

fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code: (1) As a test

of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic

and numerical results for endloss of particles confined by combined electrostatic and magnetic wells.

Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and

the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent

agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero

temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code pro-

duces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and

zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field

is also found to agree with the standard neoclassical expression for steep density and ion temperature

gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy

induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyroki-

netic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are applicable to both

neoclassical and turbulence simulations.

1This work was performed under the auspices of the U.S. Department of Energy by University of

California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48 at LLNL, Grant

No. DE-FG02-04ER54739 at UCSD, and grants DE-FG03-95ER54309 at general Atomics and DE-AC02-

76CHO3073 at PPPL.



1. Introduction

Understanding the structure of the edge transport barrier in high-performance (H-mode)

discharges requires a kinetic description of the plasmas because the radial width of the

pedestal observed in experiments is comparable to the radial width of individual ion drift

orbits (leading to a large distortion of the local distribution function from a Maxwellian),

and because the ion and electron mean-free-paths are long compared to the connection

length for the hot plasma at the top of the edge pedestal (violating the assumptions

underlying collisional fluid models). A gyrokinetic formulation (2v) [1] is a reasonable

approximation for edge plasmas because it is believed that pedestal physics is likely dom-

inated by phenomena having low frequencies compared to the ion gyrofrequency. But

previous gyrokinetic theories and codes do not apply to edge plasmas because they can-

not treat fully nonlinear electromagnetic perturbations with multi-scale-length structures

in space-time for full divertor geometry.

We report on the development and application of TEMPEST, a fully nonlinear (full-f)

gyrokinetic code, to simulate H-mode edge plasmas. This 5-dimensional (ψ, θ, ζ, E0, µ)

continuum code represents velocity space via a grid in equilibrium energy (E0) and mag-

netic moment (µ) variables, and configuration space via a grid in poloidal magnetic flux

(ψ), poloidal angle (θ) and toroidal angle (ζ). The geometry can be circular annulus or

that of a diverted tokamak and so includes boundary conditions for both closed magnetic

flux surfaces and open field lines. The same set of gyrokinetic equations [2, 3] are dis-

cretized for both geometries. The equations are solved via a Method-of-Lines approach

and an implicit backward-differencing scheme using a Newton-Krylov iteration to advance

the system in time [4]. The spatial derivatives are discretized with finite differences while a

high-order finite volume method is used in velocity space (E0, µ). A fourth-order upwind-

ing algorithm is used for parallel streaming, and a fifth-order WENO scheme [5] is used

for particle cross-field drifts. Boundary conditions at conducting material surfaces are

implemented on the plasma side of the sheath. The code includes kinetic or Boltzmann

electrons. A nonlinear Fokker-Planck collision operator (CQL) from the STELLA code [6]

has been extracted and integrated into TEMPEST using the same implicit Newton-Krylov

solver. A new Fokker-Planck collision operator in (E0, µ) space is under development for

improved accuracy and conservation properties. The gyrokinetic Poisson equation is solved



self-consistently with the gyrokinetic equations as a differential-algebraic system involving

a nonlinear system solve via Newton-Krylov iteration using a multigrid preconditioned

conjugate gradient (PCG) solver for the Poisson equation.

2. Basic Gyrokinetic Equation

A set of generalized gyrokinetic Vlasov-Maxwell equations valid for edge-plasma condi-

tions has been derived in the gyrocenter coordinate system by the Lie transform pertur-

bation method, which uses the Poincaré-Cartan-Einstein 1-form and the pullback trans-

formation for the distribution function [2]. This formalism allows inclusion of nonlinear

large-amplitude, time-dependent background electromagnetic fields in addition to small-

amplitude, short-wavelength electromagnetic perturbations. As an example, the pullback

transformation in the gyrokinetic Poisson equation is explicitly expressed in terms of

moments of the gyrocenter distribution function, thus describing the important gyro-orbit

squeezing effect due to the large electric field gradients in the edge and the full finite Lar-

mor radius effect for short wavelength fluctuations. The familiar polarization-drift density

in the gyrocenter Poisson equation is replaced by a more general expression.

2.1 Fully Nonlinear Ion Gyrokinetic Equations

The ion gyrokinetic equations presently implemented in TEMPEST for the time-dependent

five-dimensional (5D) distribution functions are simplified from our recent new formula-

tion [2] and Hahm’s earlier work [3]. In order to accurately simulate particle parallel

streaming, the large electrostatic potential Φ, which has a multiple spatial-time scales, is

split into two parts Φ = Φ0 + δφ: Φ0 is the large amplitude, slowly varying component;

δφ is the small amplitude, rapidly varying component. Here E0 is defined as the total

energy including Φ0, but not δφ. Then E0 is a constant of motion if δφ ∼ 0 for a coordinate

aligned with the direction of phase-space flow. The kinetic equation for the gyrocenter

distribution function Fα(x̄, µ̄, Ē0, t) in gyrocenter coordinates (x̄ = x − ρα, ρα = b ×

v/Ωcα), “equilibrium energy” Ē0, and magnetic moment µ̄, has the form:

∂Fα
∂t

+ v̄d ·
∂Fα
∂x̄⊥

+ (v̄‖α + vBanos)b ·
∂Fα
∂x̄

(1)
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[
q
∂〈Φ0〉
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∂B
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]
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, (5)

〈δφ〉 = 〈Φ〉 − 〈Φ0〉. (6)

Here Zαe, Mα are the electric charge and mass of electrons (α = e) and ions (α = i). The

left-hand side of Eq. (1) describes particle motion in electric and magnetic fields. Cα is

the Coulomb collision operator. The over-bar is used for the gyrocenter variables and 〈 〉

denotes the gyroangle averaging. Additional E0×B flow terms due to the large amplitude

and slow variation of Φ0 from the complete formulation [2] will be added.

2.2 Fully Nonlinear Gyrokinetic Poisson Equation

The complete gyrokinetic Poisson equation has been recently derived [2], including orbit

squeezing by large Er shearing and full FLR effect. To make it numerically tractable, two

additional approximations are made here: (1) the spatial variation of the transverse µ̄

moments Mn(x̄) calculated from Fα(x̄, µ̄, Ē0, t) is assumed much slower than that of the

potential in evaluating the full FLR effect; (2) the total transverse distribution function

is Maxwellian with temperature T⊥α.

2.2.1 Fully Nonlinear Gyrokinetic Poisson Equation in the Arbitrary Wave-

length Regime

In the arbitrary wavelength regime, the self-consistent electrostatic potential is computed

from the gyrokinetic Poisson equation:

0 = −4πe

[∑
α

ZαNα(x, t)− ne(x, t)

]
−

∑
α

1

λ2
Dα

[Γ0(b)− 1] Φ, (7)

where Γ0(b) = I0(b)e
−b, b = ρ2

α∇2
⊥/2, I0(b) is the usual zeroth-order modified Bessel

function. The ion gyroradius is ρα =
√

2T⊥α/Mα/Ωα, the ion gyrofrequency is Ωα =

ZαeB/Mαc, and the ion Debye length is λ2
Dα = T⊥α/4πNαZ

2
αe

2. Although Eq. (7) is

similar to the usual gyrokinetic Poisson equation [3], there is an important distinction.



Our gyrokinetic Poisson equation is fully nonlinear and the gyrocenter center density

Nα and perpendicular ion pressure p⊥α are calculated from the gyrocenter distribution

function Fα(x̄, µ̄, Ē0, t).

Nα(x, t) ≡ 2π

Mα

∫
B∗
‖dv̄‖dµ̄Fα, ne(x, t) ≡

2π

me

∫
B∗
‖dv‖dµfe, (8)

p⊥α = πB
∫
dv‖dµ̄(v2

⊥Fα), T⊥α =
p⊥α

Nα(x, t)
(9)

Here the dot product between the density gradient vector and potential gradient vector,

as well as the Debye shielding, have been dropped for simplicity in Eq. (7).

The first-order Padé approximation to Γ0, Γ0 − 1 = b/(1 + b), is an excellent fit for

0 ≤ b ≤ 9, and is therefore valid well into the typical ion gyrokinetic regime as shown

previously in gyrokinetic and gyrofluid simulations [7, 8]. Substituting a simple functional

transformation Φ = φL + [T⊥α/(NαZ
2
αe)] [ZαNα(x, t)− ne(x, t)] and the Padé approxima-

tion into Eq. (7) yields

ρ2
α

2
∇2
⊥φL = − Tα

NαZ2
αe

[
1 +

ρ2
α

2
∇2
⊥ ln

(
T⊥α
Nα

)]
[ZαNα(x, t)− ne(x, t)] . (10)

where φL is calculated by the gyrokinetic Poisson solver.

2.2.2 Fully Nonlinear Gyrokinetic Poisson Equation in the Long Wavelength

Regime

In the long wavelength limit k⊥ρα � 1, the self-consistent electric field is typically com-

puted from the gyrokinetic Poisson equation for multiple species

∑
α

ρ2
α

2λ2
Dα

∇⊥ · (lnNα∇⊥Φ) +∇2Φ = − 4πe

[∑
α

ZαNα(x, t)− ne(x, t)

]

−
∑
α

ρ2
α

2λ2
Dα

1

NαZαe
∇2
⊥p⊥α. (11)

There are two important distinctions between Eq. (11) and the usual gyrokinetic Pois-

son equation [3]. Our gyrokinetic Poisson equation is fully nonlinear with the gyrocenter

center density Nα and perpendicular ion pressure p⊥α calculated from the gyrocenter dis-

tribution function Fα(x̄, µ̄, Ē0, t) defined in Eqs. (8)-(9). The last term of Eq. (11) is the

diamagnetic density from the long wavelength expansion of the gyroaveraged gyrocenter

density Nα(x, t). Although the diamagnetic density is small compared to the ion gyrocen-

ter density, it is of the same order as both the polarization density in high-beta plasmas



and the difference between ion and electron gyrocenter densities! This equation is an

extension of the typical neoclassical electric field model including poloidal variation [19].

2.3 Boundary Conditions

2.3.1 Radial Boundary Conditions

The radial Robin boundary conditions are used for Fα and potential Φ at the inner core

surface ψ = ψc and the outer wall surface ψ = ψw. The Robin condition is a generalization

of the Dirichlet and Neumann boundary conditions. Since the gyrokinetic equation has

only a first-order radial advection term, only one boundary condition is used and then

only where the convection is into the domain, No boundary condition should be imposed

for particles convecting out of the domain and therefore an extrapolation is used at that

boundary.

2.3.2 Poloidal Boundary Conditions

The boundary conditions in the θ direction for Fα and for Φ are the sheath boundary

conditions at the divertor plates, and a twist-shifted (in 5D) parallel periodic condition

in the “core” (closed field-lines). Our present implementation for the sheath boundary

condition treats a normal intersection of the flux surface with the wall, with the ions

being fully absorbed and zero current through the sheath for no biasing; there can be an

energetic group of impinging electrons that can escape the sheath potential and reach the

wall with the energy E0 +eδφsh−µB > 0. Here Φsh = Φ0sh+ δφsh is the sheath potential.

i. Sheath Boundary Conditions for Potential

If the gyrokinetic ion and fluid electron model are used, the sheath potential is determined

by the ambipolarity condition:

Φsh =
Te
e

ln

 4Γi,sh

ne,shζ
√

8Te,sh/πme

 ,Γi,sh =
2πB

M2
α

∫ ∞

qΦ0sh

dE0

∫ (E0−qΦ0sh)/B

0

dµ

|v‖|
v‖F

σ
i .(12)

The σ = ± represents the plus and minus sheet of parallel velocity with F σ
i 6= 0 for only

incoming particle sheet. Here it is assumed that impinging electrons have a Maxwellian

distribution. The factor ζ ≡ 1/(1+τp/τe) includes a correction for electron long mean-free

path physics. τp is long mean-free path confinement time and τc is the confinement time



for the collisional sheath-limited case. ζ ≡ 1 if the electrons are in the short mean-free

path regime.

If both electrons and ions are kinetic, the sheath potential is determined by the quasi-

neutrality condition at the sheath entrance:

Γi,sh =
2πB

M2
α

∫ ∞

qΦ0sh

dE0

∫ (E0−qΦ0sh)/B

0

dµ

|v‖|
v‖F

σ
i , (13)

Γe,sh =
2πB

m2
e

∫ ∞

eδφsh

dE0

∫ (E0−eδφsh)/B

0

dµ

|v‖|
v‖F

σ
e , Γi,sh = Γe,sh. (14)

ii. Sheath Boundary Conditions for Distribution Functions

If the gyrokinetic ion and fluid electron model is used, the ion distribution function is:

Fα(ψ, θ, E0, µ) =

 Fα(ψ, θ, E0, µ), v‖ ≥ 0

0, v‖ ≤ 0
(15)

A convention regarding the sign of the parallel velocity is that it is positive when there is

a positive projection on the θ axis. Here the positive θ axis is pointing to the plate/wall.

If both electrons and ions are kinetic, the electron distribution function is:

fe(ψ, θ, E0, µ, σ = −1) =

 fe(ψ, θ, E0, µ, σ = 1), |v‖| ≤ vSH

0, |v‖| ≥ vSH
(16)

Here vsh =
√

2eΦsh/me is the electron threshold velocity determined by the sheath poten-

tial Φsh.

3. TEMPEST Simulation Schemes

The TEMPEST gyrokinetic equations and gyrokinetic Poisson (GKP) equation are self-

consistently integrated as a differential-algebraic system involving a nonlinear system solve

via Newton-Krylov iteration. The spatial derivatives are discretized with finite differences

while a high-order finite volume method is used in velocity space (E0, µ). A fourth-order

upwinding algorithm is used for parallel streaming, and a fifth-order WENO scheme [5]

is used for particle cross-field drifts. The GKP equation, the drift velocities and accel-

eration are discretized using centered differencing. Boundary conditions at conducting

material surfaces are implemented on the plasma side of the sheath. The GKP precon-

ditioner block is inverted using a multigrid preconditioned conjugate gradient (PCG)



solver. The PCG solver and preconditioners are provided by the Hypre library using the

“semi-structured interface”[9]. The code includes kinetic or Boltzmann electrons. The

Boltzmann relation in the adiabatic option employs flux surface averaging to maintain

neutrality within field lines and is solved self-consistently with the GKP equation. A

decomposition procedure circumvents the near singularity of the GKP Jacobian block

that otherwise degrades CG convergence. A nonlinear Fokker-Planck collision operator

(CQL) from the STELLA code [6] has been extracted and integrated into TEMPEST

using the same implicit Newton-Krylov solver. A new Fokker-Planck collision operator in

(E0, µ) space is under development for improved accuracy and conservation properties [10].

Tempest uses a Python scripting front end that allows the gyrokinetic code to interface

with other codes, such as the edge transport code UEDGE and other physics packages,

implemented as Python modules. We have designed and implemented flexible C++ data

structures for the management of distributed arrays and supporting data objects on top

of SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) [11]. The

data layout is defined on distributed and disjoint unions of rectangular blocks, but with

arbitrary interblock connectivity (nonlocal communication) for multiple regions in the

edge plasma across the magnetic separatrix.

The gyrokinetic equation is primarily particle convection both in configuration and veloc-

ity spaces. An accurate and stable convection scheme is extremely important for the

success of continuum gyrokinetic simulations. Here we present tests of our convection

scheme for parallel streaming and toroidal drift. The fourth-order upwind scheme for par-

allel streaming is given in the appendix. The complete description and tests of the code

algorithms will be given in a future publication.

3.1 Parallel streaming

The streaming test is done in a circular geometry with the magnetic field B(θ) = B0(1−

ε cos θ) ε = 0.3, r = 0.51, Bp = 0.3. The range of the variables: 0 ≤ θ ≤ 2π, 0 ≤ v‖ ≤

3vth. The initial distribution function is F0 = (B0/B)FM , where FM is a Maxwellian

distribution. For a given energy E0 and magnetic moment µ in velocity space, F0 has a

pulse profile in θ-coordinate due to B(θ). As the time evolves, the pulse will propagate

along the magnetic field due to the parallel streaming. The system evolves toward a
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FIG. 1: (a). Time evolution of the distribution function for circulating particles using a fourth-

order upwinding scheme. ν∗ = 0.0, φ0 = 0.0, ε = 0.3, h = 0.51, Zα = 1, Bp = 0.3. (b). The density

vs toroidal angle at different times for toroidal convection using a 5th-order Weno scheme.

quasi-equilibrium. The oscillations at a specified poloidal position θ for a given energy E0

and µ in velocity space represent the convection along the particle trajectory for a closed

magnetic field line. For an ideal numerical difference scheme for convection, the amplitude

should exhibit regular oscillations in time around a constant mean. The time evolution of

the distribution function is plotted in Fig. 1(a), which shows an almost ideal oscillation

for about the expected 60 cycles of a circulating particle far away from the trapping-

untrapping boundary using the forth-order upwinding scheme given in the appendix.

For a second-order upwinding scheme, a slight downward drift is observed; while for the

third-order upwinding scheme, a slightly damping is observed. However, even with the

fourth-order upwinding scheme, the damping is strong for barely circulating particles and

barely trapped particles due to non-uniform (orbit time τ) grid spacing (not shown).

3.2 Toroidal convection

A similar test has been done for toroidal drift using a 5th-order Weno scheme. Fig. 1(b)

shows the density vs toroidal angle for different times. An initial pulse is prescribed,

centered at the middle of toroidal simulation domain. As the time evolves, the pulse

propagates due to toroidal drift and should come back to its initial position with the

same shape due to toroidal periodicity. A good numerical scheme should preserve the

property. As we can see from the Fig. 1(b), our scheme preserves the property very well



after the 14 cycles. There is no significant damping or deformation from the original pulse.

The primary reason for using the 5th-order Weno scheme is the exisitence of radial regions

for particles with given energy E0 and magnetic moment µ that are inaccessible under

the influence of radial magnetic drifts.

4. TEMPEST Simulation Results

a) b) c)

FIG. 2: Collisional endloss (“Pastukhov”) test cases: (a) confinement time versus density; (b)

confinement time versus potential eφ/Te at low collisionality; (c) confinement versus mirror ratio

at low collisionality.

To facilitate verification and validation, both full-f and delta-f options are available for

either circular or divertor geometry. TEMPEST is runnable as (1) 3D for parallel stream-

ing and the scrape-off-layer (SOL) physics with endloss F (θ, E0, µ); (2) 4D for axisym-

metric transport F (ψ, θ, E0, µ), and (3) 5D for turbulence F (ψ, θ, ζ, E0, µ). The different

aspects of 3D, 4D and 5D TEMPEST have been verified on various known physics prob-

lems: (1) collisional scattering into a velocity-space loss cone; (2) neoclassical flow and

transport; (3) electric field generation and geodesic acoustic mode damping; and (4) self-

consistent radial electric field for steep density and ion temperature gradients; (5) drift

waves and ion temperature gradient (ITG) modes.



4.1 3D Pastukhov Collisional Endloss

As a test of collisional velocity-space transport and parallel streaming, 3D TEMPEST

(1d2v) simulation results are compared with published analytical and numerical results

as shown in Fig. 2 for the endloss of particles confined by combined electrostatic and mag-

netic wells [12, 13, 14]. Here the electrostatic and magnetic field are uniform in simulation

volume, with abrupt abrupt increases at the walls (incorporated into the boundary con-

ditions).Good agreement is found over a wide range of collisionality, confining potential,

and mirror ratio; the required velocity-space resolution is modest. In these simulations,

the linearized CQL collision package is used.
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FIG. 3: (a) Comparison between simulation results with theory for a collisionless case with

∇Ti = 0 and zero finite banana orbit width. Flux surface averaged parallel heat flux 〈q‖i〉. The

solid lines are theory and the other lines are for different times; (b) Comparison of simulation

results with theory for flux surface averaged parallel flow velocity 〈U‖i〉 in the banana regime with

ν∗i ' 0.02, ∇Ti = 0 and finite banana orbit width in X-point divertor geometry. The average is

done by integration along the field-line from the inner plate to outer plate in the SOL. (c) The

contours of parallel heat flux q‖(R,Z) in the divertor geometry.

4.2 4D Neoclassical flows

For a shifted Maxwellian distribution that analytically satisfies Eq. (1) as an initial con-

dition, TEMPEST should preserve the solution without any significant change (within



our finite-difference truncation accuracy) after running some time steps. We tested such

a case using the following simulation parameters: inverse aspect ratio ε = a/R0 = 0.03,

the major radius R0 = 17.1 meter, toroidal magnetic field Bt = 1.5T , and poloidal

magnetic field Bp = 0.2T . The ion density and temperature profiles used are ni(ψ) =

Nix exp(− ln(Nix/Nio)ψ/Lψ), Ti(ψ) = Tix exp(− ln(Tix/Tio)ψ/Lψ) with Tix = 3keV, Tio =

0.95Tix, Nix = 1 × 1020m−3, and Nio = 0.95Nix. The mesh resolutions are nψ = 30, nθ =

50, nE = 60, and nµ = 30. In the simulations Φ is set to zero for simplicity. As shown in

Fig. 3(a), the simulation results remain in good agreement with theoretical prediction even

after 10000 time steps ( 50 thermal ion transit times). The solid line in plot of q‖i comes

from theoretical prediction for a shifted Maxwellian distribution, q‖α = 2.5NαU‖αTα, and

U‖α = −(I/Ωα)(Tα/Mα) (∂ lnNα/∂ψ) .

In divertor geometry with given particle and heat sources on the inner core boundary

surface, it is found that the dominance of rapid parallel endloss of particles and energy in

the SOL induces a parallel flow that is stronger than core neoclassical predictions in the

SOL as indicated in Fig. 3(b); a symmetry point is developed for the parallel heat flux on

the top of the machine as expected as shown in Fig. 3(c).

4.3 4D Geodesic-Acoustic Modes

The Geodesic-Acoustic Mode (GAM) is an asymmetric mode, which involves parallel ion

dynamics, cross-field drifts, and acceleration. Earlier GAM theory and simulations focused

on the large aspect ratio, small orbit [15, 16] regime. Recently Sugama and Watanabe

found that the damping rate is sensitive to k⊥ρi at large q due to the effect of large

banana orbits [17]. In our 4D GAM simulations, the charge is radially separated by an

initial sinusoidal perturbation of the ion density. The electron model is Boltzmann ne =

〈ni(ψ, θ, t = 0)〉 exp(eφ/Te)/〈exp(eφ/Te)〉, where 〈〉 represents the flux surface average.

This choice of coefficient for Boltzmann electron model means that there is no cross field

electron transport. Both radial and poloidal boundary conditions are periodic. The first

full-f, self-consistent simulation results of collisionless damping of geodesic acoustic modes

and zonal flow are plotted in Fig. 4. Good agreement is shown between theory [17, 18]

and simulations for the frequency of GAMs in Fig. 4(a) and damping rate in Fig. 4(b).

The 30% difference between theory and simulation may be due to the theory using an



asymptotic 1/q2 expansion for large q, while q=2.2 in the simulation is not very large.

The large effect of the orbit size on the GAM damping rate is illustrated in Fig. 4(c). For

the same parameters, the damping rate is almost zero if the finite banana orbit effect is

ignored.
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FIG. 4: (a) Time evolution of the zonal-GAM potential shows GAM oscillation, collisionless

damping, and residual for a large-aspect-ratio circular geometry with q = 2.2 and ε = 0.02 with

three different velocity-space resolutions; (b) Comparison of simulation results with theory for

the GAM damping rate at three different velocity resolutions in finite banana orbit regime; (c)

GAM damping rate vs q with finite banana orbit effect (red) and without finite banana orbit

effect (black) from Sugama and Watanabe theory [17].

4.4 4D Neoclassical Radial Electric Field with Finite Orbits

The simulations presented here are carried out for large aspect ratio circular geometry

with the magnetic field Bt = 15T,R0 = 17.1m, q = 2.3 and ε = 0.02. The ion density and

temperature profiles are initialized as a tanh function of radius centered around the middle

of simulation domain [N(x) = n0+nm tanh((x−xm)/∆n)]. The boundary ion distribution

is a fixed Maxwellian withN(x0) = 1×1020m−3, N(xL) = 5×1019m−3, Ti(x0) = 3keV , and

Ti(xL) = 1.5keV during a simulation. The radial boundary condition for the potential is

φ(x0) = φ(xL) = 0. There are two radial boundary buffer zones where the ion distribution

function is forced toward the initial Maxwellian by a Krook-type collision term with large

damping rate at the boundaries and negligibly small rate in the center region to avoid



complications associated with banana orbit intersections at the boundaries. The electron

model is the Boltzmann model specified in section 3.3. The neoclassical radial electric field

from TEMPEST simulations agrees very well with the standard neoclassical expression

〈Ui‖〉 = (cTi/ZieBp) [k(∂ lnTi/∂r)− (∂ lnPi/∂r)− (Zie/Ti)(∂〈Φ〉/∂r)] with k = 1.17 as

shown in Fig. 5(a), even in a region where the density gradient scale length is comparable

to the banana orbit size[19]. The radial electric field is generated due to the neoclassi-

cal polarization and the relative maximum charge separation is only 0.4% as shown in

Fig. 5(b). A time history of the flux surface averaged electric potential in Fig. 5(c) shows

geodesic acoustic oscillations generated by the initial conditions, which then relax to a

near steady state, consistent with the previous studies[19, 20]. Due to the steep ion den-

sity and temperature gradient, Er is much larger than the Rosenbluth-Hinton residual as

discussed in the previous section.
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FIG. 5: (a) Er from TEMPEST simulations (black) vs neoclassical theory (red) with finite banana

orbit effect in circular geometry with q = 2.3 and ε = 0.02; (b) the charge separation due to finite

ion banana orbit effect; (c) time evolution of the flux surface averaged electrostatic potential at

different radial locations.

4.5 5D Drift Waves and ITG Modes

Conventional orderings are different for 4D neoclassical transport and 5D (ψ, θ, ζ, E0, µ)

turbulence where ζ as the binormal coordinate. Our 5D gyrokinetic formulation yields a

set of nonlinear electrostatic gyrokinetic equations that are valid for both neoclassical and



turbulence simulations. In particular, the field solver for shear/zonal flow is different from

that for turbulence due to: (1) the strong poloidal variation of the electrostatic potential in

the divertor X-point geometry originating from different boundary conditions in the core,

the SOL, and private-flux regions; (2) additional terms are promoted by the edge ordering

of a large background E×B flow uE ' vTi. 5D tempest uses field-aligned coordinates with

4th-order interpolation and ζ-index shifting for twist-shifted parallel boundary condition

in the core inside the separatrix and for radial differencing in the usual flux coordinates to

minimize the cell distortion due to magnetic shear. 5D TEMPEST shows good agreement

with theory for the drift-wave frequency with 10% radial variation of the ion density and

a flat ion temperature profile. For a different simulation setup with 10% radial variation

of ion temperature profile and the flat ion density profile, 5D Tempest also shows an ITG

mode. Benchmarks with theory and other codes are in progress.

5. Summary and Conclusions

The recently developed full-f, 5D continuum edge-plasma code TEMPEST utilizes high-

order spatial differencing and a high-order finite-volume scheme for velocity space to

accurately simulate particle convection and Coulomb collisions. TEMPEST runs in both

full divertor geometry for maximum applicability to diverted tokamaks and in circular

geometry for benchmarking with analytic theories and existing core gyrokinetic codes.

TEMPEST demonstrates expected physics results in 3D, 4D and 5D verification tests.

The further improvement and development of TEMPEST will yield a valuable predictive

model for the edge pedestal. This work is focused on a fundamental understanding of

relevant physics from first-principles theory and simulations and should greatly increase

our confidence in predictions of ITER edge-plasma performance.
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Appendix: Fourth-order upwind scheme for non-uniform grid spacing

We write the finite difference approximation to the first derivative at node i for a dis-

cretization of N points as

(∂τf)i ≈
N∑
j=1

aj(i)fj. (17)

The function value at i is written fi = f(τi), where τi is defined in Eq. (44). For a fourth-

order upwind-biased stencil at node i, the support of {τi−3, τi−2, τi−1, τi, τi+1} leads to the

following weights:

ai+1(i) = (τi−τi−1)(τi−τi−2)(τi−τi−3)
(τi+1−τi)(τi+1−τi−1)(τi+1−τi−2)(τi+1−τi−3)

, (18)

ai(i) = 1
(τi−τi−1)

+ 1
(τi−τi−2)

+ 1
(τi−τi−3)

− 1
(τi+1−τi) , (19)

ai−1(i) = − (τi+1−τi)(τi−τi−2)(τi−τi−3)
(τi+1−τi−1)(τi−τi−1)(τi−1−τi−2)(τi−1−τi−3)

, (20)

ai−2(i) = (τi+1−τi)(τi−τi−1)(τi−τi−3)
(τi+1−τi−2)(τi−τi−2)(τi−1−τi−2)(τi−2−τi−3)

(21)

ai−3(i) = − (τi+1−τi)(τi−τi−1)(τi−τi−2)
(τi+1−τi−3)(τi−τi−3)(τi−1−τi−3)(τi−2−τi−3)

(22)

with aj(i) ≡ 0 otherwise. The formal leading-order truncation error is

−(τi+1 − τi)(τi − τi−1)(τi − τi−2)(τi − τi−3)

120

(
∂5
τf

)
i
. (23)
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