Haussmann, Irmgard U. and Bodi, Zsuzsanna and Sanchez-Moran, Eugenio and Mongan, Nigel P. and Archer, Nathan and Fray, Rupert G. and Soller, Matthias (2016) m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature, 540 (7632). pp. 301-304. ISSN 1476-4687

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/39448/1/Nature_m6A_2016.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination

IRMGARD U. HAUSSMANN ${ }^{1,}$ 2, ZSUZSANNA BODI ${ }^{3 *}$, EUGENIO SANCHEZMORAN ${ }^{*}$, NIGEL P. MONGAN ${ }^{4}$, NATHAN ARCHER ${ }^{3}$, RUPERT G. FRAY ${ }^{3}$ and MATTHIAS SOLLER ${ }^{1,5}$
${ }^{1}$ School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
${ }^{2}$ School of Life Science, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB, United Kingdom
${ }^{3}$ School of Biosciences, Plant Science Division, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, United Kingdom
${ }^{4}$ School of Veterinary Medicine and Sciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD, United Kingdom

Running title: m 6 A is required for Sxl alternative splicing

Key Words: mRNA methylation, N6-methyladenosine, alternative splicing, sex determination, dosage compensation

*equal contributing authors

${ }^{5}$ Corresponding author: m.soller@bham.ac.uk

N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins ${ }^{1-7}$. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that include METTL3 (Methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1 associated protein) and KIAA1429. Drosophila has corresponding homologues named dIME4 and dKAR4 (Inducer of meiosis-4 and Karyogamy protein-4), and Female-lethal(2)d (Fl(2)d) and Virilizer (Vir) ${ }^{8-}$ ${ }^{12}$. In Drosophila, $f(2) d$ and vir are required for sex-dependent regulation of alternative splicing (AS) of the sex determination factor Sex-lethal (SxI) ${ }^{\mathbf{1 3}}$. However, the functions of m 6 A in introns in the regulation of AS remain uncertain ${ }^{3}$. Here we show that m 6 A is absent in mRNA of Drosophila lacking dIME4. In contrast to mouse and plant knock-out models ${ }^{5,7,14}$, Drosophila dIME4 null mutants remain viable, though flightless and show a sex bias towards maleness. This is because m6A is required for female-specific AS of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal2 (msl-2) to prevent dosage compensation normally occurring in males. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies dIME4 mutants. Loss of m6A also affects AS of additional genes, predominantly in the 5'UTR, and has global impacts on the expression of metabolic genes. Requirement of m6A and its reader YT521-B for female-specific Sxl AS reveal that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression.

In mature mRNA the m6A modification is most prevalently found around the stop codon as well as in 5^{\prime} UTRs and in long exons in mammals, plants and yeast ${ }^{2,3,6,7,15}$. Since methylosome components predominantly localize to the nucleus it has been speculated that m6A localized in
pre-mRNA introns could have a role in AS regulation in addition to such a role when present in long exons ${ }^{9-12,16}$. This prompted us to investigate whether m6A is required for $S x l$ AS, which determines female sex and prevents dosage compensation in females ${ }^{13}$. We generated a null allele of the Drosophila METTL3 methyltransferase homologue dIME4 by imprecise excision of a P-element inserted in the promoter region. The excision $\Delta 22-3$ deletes most of the proteincoding region including the catalytic domain and is thus referred to as dIME4 ${ }^{\text {null }}$ (Fig 1a). These flies are viable and fertile, but flightless, and this phenotype can be rescued by a genomic construct restoring dIME4 (Fig 1a and b). dIME4 shows increased expression in the brain, and like in mammals and plants ${ }^{17}$, localizes to the nucleus (Fig 1c,d).

Following RNAse T 1 digestion and ${ }^{32} \mathrm{P}$ end-labeling of RNA fragments we detected m6A after G in polyA mRNA of adult flies at relatively low levels compared to other eukaryotes (m6A/A ratio: 0.06%, Fig. 1 g $)^{2,3,5}$, but higher in unfertilized eggs (0.18%, Extended Data Fig. 1). After enrichment with an anti-m6A antibody m6A is readily detected in polyA mRNA, but absent from $\operatorname{dIME4}^{\text {null }}$ (Fig. 1h-j).

As found in other systems and consistent with a potential role in translational regulation ${ }^{18-21}$, m6A was detected in polysomal mRNA (0.1%, Fig. 1k), but not in the poly(A)-depleted ribosomal RNA (rRNA) fraction. This also confirmed that any m6A modification in rRNA is not after G in Drosophila (Fig. 11).

Consistent with our hypothesis that m6A plays a role in sex determination and dosage compensation, the number of $d I M E 4^{\text {null }}$ females was reduced to 60% compared to the number of males ($\mathrm{p}<0.0001$), while in the control strain female viability was 89% (Fig. 2a). The key regulator of sex determination in Drosophila is the RNA binding protein Sxl, which is specifically expressed in females. Sxl positively auto-regulates expression of itself and its target
transformer (tra) through AS to direct female differentiation ${ }^{13}$. In addition, Sxl suppresses translation of msl-2 to prevent up-regulation of transcription on the X-chromosome for dosage compensation (Fig. 2b); full suppression also requires maternal factors ${ }^{22}$. Accordingly, female viability was reduced to 13% by removal of maternal m6A together with zygotic heterozygosity for $S x l$ and dIME4 (dIME4 $4^{\Delta 22-3}$ females crossed with $S x l^{7 B 0}$ males, a $S x l$ null allele, $\mathrm{p}<0.0001$). Female viability of this genotype is completely rescued by a genomic construct (Fig. 2a) or by preventing ectopic activation of dosage compensation by removal of msl-2 (msl $2^{227} / D f(2 L) E x e l 7016$, Fig. 2a). Hence, females are non-viable due to insufficient suppression of $m s l-2$ expression resulting in up-regulation of gene expression on the X-chromosome from reduced Sxl levels. In the absence of $m s l-2$, disruption of $S x l$ AS resulted in females with sexual transformations ($32 \%, n=52$) displaying male-specific features such as sex combs (Fig. 2c-e), which were mosaic to various degrees indicating that Sxl threshold levels are affected early during establishment of sexual identities of cells and/or their lineages ${ }^{13}$. In the presence of maternal dIME4, $S x l$ and $d I M E 4$ do not genetically interact ($S x l^{7 B 0} / F M 7$ females crossed with dIME4 ${ }^{\text {null }}$ males, 103% female viability, $n=118$). In addition, $S x l$ is required for germline differentiation in females and its absence results in tumorous ovaries ${ }^{23}$. Consistent with this we detected tumorous ovaries in $S x l^{7 B 0} /+;$ dIME4 $4^{\text {null }} /+$ daughters from $d I M E 4^{\text {null }}$ females $(22 \%$, $n=18$, Extended Data Fig. 2), but not in homozygous $d I M E 4^{\text {null }}$ or heterozygous $S x l^{7 B 0}$ females ($n=20$ each).

Furthermore, levels of the $S x l$ female-specific splice form were reduced to $\sim 50 \%$ consistent with a role for m6A in Sxl AS (Fig. 2f and Extended Data Fig. 3a). As a result, female-specific splice forms of tra and msl-2 were also significantly reduced in adult females (Fig. 2f and Extended Data Fig. 3b, c).

To obtain more comprehensive insights into Sxl AS defects in $d I M E 4^{\text {null }}$ females, we examined splice junction reads from RNA-seq. Besides the significant increase in inclusion of the malespecific Sxl exon in dIME $^{\text {null }}$ females (Fig. 2f- h, and Extended Data Fig. 3a), cryptic splice sites and increased numbers of intronic reads were detected in the regulated intron. Consistent with our RT-PCR analysis of tra, the reduction of female splicing in the RNA sequencing is modest, and as a consequence, AS differences of Tra targets $d s x$ and $f r u$ were not detected in whole flies, suggesting cell-type specific fine-tuning required to generate splicing robustness rather than being an obligatory regulator (Extended Data Fig. 4a-c). In agreement with dosage compensation defects as main consequence of $S x l$ miss-regulation in $d I M E 4^{\text {null }}$ mutants, X-linked, but not autosomal, genes are significantly up-regulated in $\operatorname{dIME4}{ }^{\text {null }}$ females compared to the control ($\mathrm{p}<0.0001$, Extended Data Fig. 4d, e).

Further, we also find enrichment of $S x l$ mRNA in pull-downs with an m6A antibody compared to m6A-deficient yeast mRNA added for quantification (Fig. 2i). This enrichment is comparable to what was observed for m6A-methylated mRNA in yeast ${ }^{24}$.

To further map m6A sites in the intron of $S x l$ we employed an in vitro m6A methylation assay using Drosophila nuclear extracts and labeled substrate RNA. m6A methylation activity was detected in the vicinity of alternatively spliced exons (Fig. 2j, RNAs B, C, and E). Further finemapping localized m6A in RNAs C and E to the proximity of Sxl binding sites (Extended Data Fig. 5). Likewise, the female-lethal single amino acid substitution alleles $f l(2) d^{l}$ and $v i r^{2 F}$ interfere with Sxl recruitment, resulting in impaired $S x l$ auto-regulation and inclusion of the male-specific exon ${ }^{25}$. Female lethality of these alleles can be rescued by dIME4 ${ }^{\text {null }}$ heterozygosity (<0.0001, Fig. 2k), further demonstrating involvement of the m6A methylosome in $S x l$ AS.

Next, we globally analyzed AS changes in $d I M E 4^{\text {null }}$ females compared to the wild-type control strain. As described earlier (Fig. 2h), a statistically significant reduction in female-specific AS of Sxl $\left(\Delta \mathrm{psi}=0.34, \mathrm{q}=9 \times 10^{-8}\right)$ was observed. In addition, 243 AS events in 163 genes were significantly different in $d I M E 4^{\text {null }}$ females ($\mathrm{q}<0.05, \Delta \mathrm{psi}>0.2$), equivalent to $\sim 2 \%$ of alternatively spliced genes in Drosophila (Suppl. Table 1). Six genes for which the AS products could be distinguished on agarose gels were confirmed by RT-PCR (Extended Data Fig. 6). Interestingly, lack of dIME4 did not affect global AS and no specific type of AS event was preferentially affected. However, alternative first exons (18\% vs 33%) and mutually exclusive exon (2% vs 15%) events were reduced mostly to the extent of retained introns (16% vs 6%), alternative donor (16% vs 9%) and unclassified events (14% vs 6%) compared to a global breakdown of AS in Drosophila (Extended Data Fig. 7a). Interestingly, the majority of affected AS events in $d I M E 4^{\text {null }}$ were located to the 5^{\prime} 'UTR, and these genes had a significantly higher number of AUGs in their 5^{\prime} 'UTR compared to the 5'UTRs of all genes (Extended Data Fig. $7 \mathrm{~b}, \mathrm{c}$). Such feature had been shown relevant to translational control under stress conditions ${ }^{26}$.

The majority of the 163 differentially alternatively spliced genes in dIME4 females are broadly expressed (59\%), while most of the remainder are expressed in the nervous system (33\%), consistent with higher expression of dIME4 in this tissue (Extended Data Fig. 7d). Accordingly, gene ontology (GO) analysis revealed a highly significant enrichment for genes in synaptic transmission ($\mathrm{p}<7 \mathrm{x} 10^{7}$, Suppl. Table 1).

Since the absence of m6A affects AS, m6A marks are probably deposited co-transcriptionally before splicing. Co-staining of polytene chromosomes with antibodies against HA-tagged dIME4 and RNA Pol II revealed broad co-localization of dIME4 with sites of transcription (Fig. 3a-e), but not with condensed chromatin visualized with antibodies against histone H 4 (Fig. 3f-i).

Furthermore, localization of dIME4 to sites of transcription is RNA-dependent, as staining for dIME4, but not for RNA Pol II, was reduced in an RNase-dependent manner (Fig. 3j,k).

Although m6A levels after G are low in Drosophila compared to other eukaryotes, broad colocalization of dIME4 to sites of transcription suggests profound effects on the gene expression landscape. Indeed, differential gene expression analysis revealed 408 differentially expressed genes (≥ 2-fold change, $\mathrm{q} \leq 0.01$) where 234 genes were significantly up- and 174 significantly down-regulated in neuron-enriched head/thorax of adult dIME4 $^{\text {null }}$ females ($\mathrm{q}<0.01$, at least twofold, Suppl. Table 2). Cataloguing these genes according to function reveals prominent effects on gene networks involved in metabolism including reduced expression of 17 genes involved in oxidative phosphorylation ($\mathrm{p}<0.0001$, Suppl. Table 2). Notably, overexpression of the m 6 A mRNA demethylase FTO in mice leads to an imbalance in energy metabolism resulting in obesity ${ }^{27}$.

Next, we tested whether either of the two substantially divergent YTH proteins, YT521-B and CG6422 (Fig. 4a) decodes m6A marks in Sxl mRNA. When transiently transfected into male S2 cells, YT521-B localizes to the nucleus, whereas CG6422 is cytoplasmic (Fig. 4b-d, Ext. Data Fig. 8). Nuclear YT521-B can switch $S x l$ AS to the female mode and also binds to the $S x l$ intron in S2 cells (Fig. 4e,f). In vitro binding assays with the YTH domain of YT521-B indeed demonstrate increased binding of m6A-containing RNA (Ext. Data Fig. 9). In vivo, YT521-B also localizes to sites of transcription (Ext. Data Fig. 10).

To further examine the role of YT521-B in decoding m6A we analyzed Drosophila strain YT521-B ${ }^{\text {MI02006 }}$ where a transposon in the first intron disrupts YT521-B. This allele is also viable (YT521-B ${ }^{M 102006} / D f(3 L)$ Exel6094; Fig. 4g,h,j), and phenocopies the flightless phenotype and the female Sxl splicing defect of $d I M E 4^{\text {null }}$ (Fig. 4h,i). Likewise, removal of maternal YT521-B
together with zygotic heterozygosity for $S x l$ and YT521-B reduced female viability ($\mathrm{p}<0.0001$, Fig. 4j) and resulted in sexual transformations ($57 \%, n=32$) such as male abdominal pigmentation (Fig. 4k-m). In addition, overexpression of YT521-B results in male lethality, which can be rescued by removal of dIME4 further reiterating the role of m6A in $S x l$ AS ($\mathrm{p}<0.0001$, Fig. 4n). Since YT521-B phenocopies $d I M E 4$ for $S x l$ splicing regulation it is the main nuclear factor for decoding m6A present in the proximity of the Sxl binding sites. YT521-B bound to m 6 A assists Sxl in repressing inclusion of the male-specific exon, thus providing robustness to this vital gene regulatory switch (Fig. 4o).

Nuclear localization of m6A methylosome components suggested a role for this "fifth" nucleotide in AS regulation. Our discovery of the requirement of m6A and its reader YT521-B for female-specific $S x l$ AS has important implications for understanding the fundamental biological function of this enigmatic mRNA modification. Its key role in providing robustness to Sxl AS to prevent ectopic dosage compensation and female lethality, together with localization of the core methylosome component dIME4 to sites of transcription, indicates that the m6A modification is part of an ancient, yet unexplored mechanism to adjust gene expression. Hence, the recently reported role of m6A methylosome components in human dosage compensation ${ }^{28,29}$ further support such role and suggests that m6A-mediated adjustment of gene expression might be a key step to allow for development of the diverse sex determination mechanisms found in nature.

Acknowledgments

We thank J. Horabin, N. Perrimon and Bloomington, Harvard and Kyoto stock centers for fly lines, BacPAc for DNA clones, E. Zaharieva and M.L. Li for help with imaging, W. Arlt and R.

Michell for comments on the manuscript, and J-Y. Roignant for communication of results prior to publication. We acknowledge funding from the $\operatorname{BBSRC}(\mathrm{BB} / \mathrm{M} 008606 / 1)$ to RF.

Author contributions

I.U.H. and M.S. performed biochemistry, cell biology and genetic experiments, E.S.M. stained chromosomes, and Z.B., N.A. and R.F. performed biochemistry experiments. N.M. analyzed sequencing data. I.U.H., R.F. and M.S. conceived the project and wrote the manuscript with help from N.M. and Z.B.

Author information

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to M.S. (m.soller@bham.ac.uk).

References:

1 Luo, S. \& Tong, L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci U S A 111, 13834-13839 (2014). Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149, 1635-1646 (2012).

3 Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201-206 (2012).

4 Perry, R. P. \& Kelley, D. E. Existence of methylated messenger RNA in mouse L cells. Cell 1, 37-42 (1974).

5 Zhong, S. et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278-1288 (2008).

6 Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409-1421 (2013).

Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3^{\prime} UTR regulation. Genes Dev 29, 2037-2053 (2015).

Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6adenosine methylation. Nat Chem Biol 10, 93-95 (2013).

Horiuchi, K. et al. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 288, 33292-33302 (2013).

Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G. \& Rottman, F. M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. $R N A$ 3, 1233-1247 (1997).

Penalva, L. O. et al. The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics 155, 129-139 (2000).

Niessen, M., Schneiter, R. \& Nothiger, R. Molecular identification of virilizer, a gene required for the expression of the sex-determining gene Sex-lethal in Drosophila melanogaster. Genetics 157, 679-688 (2001).

13 Schutt, C. \& Nothiger, R. Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127, 667-677 (2000).

Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002-1006 (2015).

Luo, G. Z. et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat Соттии 5, 5630 (2014).

Xiao, W. et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell 61, 507-519 (2016).

Hongay, C. F. \& Orr-Weaver, T. L. Drosophila Inducer of MEiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc Natl Acad Sci U S A 108, 14855-14860 (2011).

Bodi, Z., Bottley, A., Archer, N., May, S. T. \& Fray, R. G. Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One 10, e0132090 (2015).

Wang, X. et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 161, 1388-1399 (2015).

Meyer, K. D. et al. 5' UTR m(6)A Promotes Cap-Independent Translation. Cell 163, 9991010 (2015).

Zhou, J. et al. Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526, 591-594 (2015).

Zaharieva, E., Haussmann, I. U., Brauer, U. \& Soller, M. Concentration and localization of co-expressed ELAV/Hu proteins control specificity of mRNA processing. Mol Cell Biol 35, 3104-3115 (2015).

Salz, H. K. Sex, stem cells and tumors in the Drosophila ovary. Fly (Austin) 7, 3-7 (2012).

Figure legends

Figure 1: Analysis of dIME4 null mutants and m6A methylation in Drosophila. a, Genomic organization of the dIME4 locus depicting the transposon (black triangle) used to generate the deletion $\triangle 22-3$, which is a dIME4 null allele and the hemaglutinin (HA)-tagged genomic rescue fragment. b, Flight ability of $d I M E 4^{\text {null }} / D f(3 R)$ Exel6197 shown as mean \pm SE ($n=3$). gdIME4: genomic rescue construct. c and d, Nuclear localization of dIME4::HA in eye discs and brain neurons expressed from $U A S$. Scale bars: 50 and $1 \mu \mathrm{~m}$. e, Schematic diagram of a 2D thin layer chromatography (TLC). f, TLC from an in vitro transcript containing m6A. g, TLC from mRNA of adult flies. \mathbf{h} and \mathbf{i}, TLC of fragmented mRNA after enrichment with an anti-m6A antibody
from wild type (h) and dIME4 ${ }^{\text {null }}$ (i, overexposed). \mathbf{j}, Quantification of immunoprecipitated ${ }^{32} \mathrm{P}$ label shown as normalized mean ($n=2$). \mathbf{k} and \mathbf{l}, TLC from mRNA (\mathbf{k}) or rRNA (\mathbf{l}) from polysomes from wild-type flies.

Figure 2: m6A methylation is required for Sex-lethal AS in sex determination and dosage compensation. a, Female viability of indicated genotypes devoid of maternal m6A (n : total number of flies). \mathbf{b}, Schematic depicting Sxl control of female differentiation. c-e, Front legs of indicated genotypes. Scale bar: $100 \mu \mathrm{~m}$. The arrowhead points towards the position of the sex comb normally present only in males. f, Ratio of sex-specific splice isoforms from adult females from RT-PCR shown as mean \pm SE $(n=3, \mathrm{p}<0.01)$. \mathbf{g}, RT-PCR for male-specific $S x l$ splicing in control and dIME4 ${ }^{\text {null }}$ females. \mathbf{h}, Sashimi plot depicting Tophat-mapped RNA sequencing reads and exon junction reads from control and $d I M E 4^{\text {null }}$ females below the annotated gene model. Male-specific splice junction reads are circled and cryptic splice sites are boxed. RNA fragments used for m6A in vitro methylation assays are indicated at the bottom. i, Presence of m6A in Sxl transcripts detected by m6A immunoprecipitation followed by qPCR from nuclear mRNA of early embryos (shown as mean, $n=2$). \mathbf{j}, 1D-TLC of in vitro methylated, $\left[{ }^{32} \mathrm{P}\right]$-ATP-labeled substrate RNAs shown in \mathbf{g}. Nucleotide markers from in vitro transcripts in the absence (M1) or presence (M2) of m6A. The right part shows an overexposure of the same TLC. \mathbf{k}, Rescue of female lethality of female-lethal $f l(2) d^{l}$ and $v i r^{2 F}$ alleles by removal of one copy of $d I M E 4$.

Figure 3: dIME4 co-localizes to sites of transcription. a-e, Polytene chromosomes from salivary glands expressing dIME::HA stained with anti-Pol II (red, c), anti-HA (green, d) and DNA (DAPI, blue, e), or merged (yellow, a and b). f-i, Polytene chromosomes stained with anti-

Pol II (red, h), anti-histone H4 (green, \mathbf{g}) and DNA (blue, i), or merged (yellow, f). Polytene chromosomes treated with low ($\mathbf{j}, 2 \mu \mathrm{~g} / \mathrm{ml}$) and high $(\mathbf{k}, 10 \mu \mathrm{~g} / \mathrm{ml})$ RNase A concentration prior to staining with anti-Pol II, anti-histone H4 and DNA. Scale bars in \mathbf{a}, \mathbf{j} and \mathbf{k} are $20 \mu \mathrm{~m}$ and in \mathbf{e} and \mathbf{i} are $5 \mu \mathrm{~m}$.

Fig 4: YTH protein YT521-B decodes m6A methylation in Sxl. a, Domain organization of Drosophila YTH proteins (YTH domain in green). n: nuclear, c: cytoplasmic b-d, Cellular localization and size of HA-tagged YT521-B and CG6422 in S2 cells. Scale bar: $1 \mu \mathrm{~m} . \mathbf{e}$, Suppression of male-specific Sxl AS upon expression of Sxl and YT521-B, but not CG6422 in male S2 cells. f, Binding of YT521-B to pre-mRNA of the regulated $S x l$ intron. \mathbf{g}, Genomic organization of the YT521-B locus depicting the transposon (black triangle) disrupting the ORF. h, Flight ability of YT521-B $B^{M I 02006} / D f(3 L)$ Exel6094 shown as mean \pm SE ($n=3$). i, Sxl AS in female wild-type and YT521-B ${ }^{M 102006} / D f(3 L)$ Exel6094 flies. j, Female viability of indicated genotypes (n : total number of flies) reared at $29^{\circ} \mathrm{C} . \mathbf{k - m}$, Abdominal pigmentation of indicated genotypes reared at $29{ }^{\circ} \mathrm{C}$. The arrowhead points towards the position of the dark pigmentation normally present only in males. Scale bar: $100 \mu \mathrm{~m} . \mathbf{n}$, YT521-B was overexpressed from a $U A S$ transgene with tubulinGAL4 $\left(2^{\text {nd }}\right)$ in wild type or $d I M E 4^{\text {null }}$ at $27^{\circ} \mathrm{C} . \mathbf{0}$, Model for female-specific $S x l$ AS by Sxl, m6A and its reader YT521-B in co-operatively suppressing inclusion of the male-specific exon.

Online Methods

Data reporting

No statistical methods were used to predetermine sample size. The experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment.

Drosophila genetics, generation of constructs and transgenic lines

The deletion allele $d I M E 4^{\Delta 22-3}$ was obtained from imprecise excision of the transposon $P\{S U P o r-$ P\}KrT95D and mapped by primers 5933 F1 (CTCGCTCTATTTCTCTTCAGCACTCG) and 5933 R9 (CCTCCGCAACGATCACATCGCAATCGAG). To obtain a viable line of $d I M E 4^{\text {null }}$, the genetic background was cleaned by out-crossing to $D f(3 R)$ Exel6197. Flight ability was scored as number of flies capable of flying out of a petri-dish within 30 sec for groups of 15-20 flies for indicated genotypes. Viability was calculated from the numbers of females compared to males of the correct genotype and statistical significance was determined by a χ^{2} test (GraphPad Prism). Unfertilized eggs were generated by expressing sex-peptide in virgin females as described ${ }^{30}$.

The genomic rescue construct was retrieved by recombineering (Genebridges) from BAC clone CH321-79E18 by first cloning homology arms with SpeI and Acc65I into pUC3GLA separated by an $E c o R V$ site for linearization

(CTCCGCCGCCGGAACCGCCGCCTCCTCCGCCACTTTGCAGGTTGAGCGGACCGCCT

 CCAGGGCCGCTGCCGCCGGTGCCGCTGATATCCCAGCATGGTAGCTGCGGCCACTCC TAGTCCCGCCTTTAACCACAGCTTGGGGTCCTCCGTCATCAGGCCGAATTGCCTCGA G). An HA-tag was then fused to the end of the ORF using two PCR amplicons and SacI and XhoI restriction sites. This construct was the inserted into PBac\{y+-attB-3B\}VK00002 at 76A as described ${ }^{31}$.The dIME4 UAS construct was generated by cloning the ORF from fly cDNA into a modified pUAST with primers Adh dMT-A70 F1 EI (GCAGAATTCGAGATCtAAAGAGCCTGCTAAAGCAAAAAAGAAGTCACCATGGCAGA TGCGTGGGACATAAAATCAC) and dMT-A70 HA R1 Spe (GGTAACTAGTCTTTTGTATTCCATTGATCGACGCCGCATTGG) by adding a translation initiation site from the $A d h$ gene and two copies of an HA tag to the end of the ORF. This construct was then also inserted into $P B a c\{y+-a t t B-3 B\} V K 00002$ at 76A.

For transient transfection in S2 cells, YT52B-1 and CG6422 ORFs were amplified from fly cDNA by a combination of nested and fusion PCR incorporating a translation initiation site from the $A d h$ gene using primers CG6422 adh F1 (GCCTGCTAAAGCAAAAAAGAAGTCACCACATGTCAGGCGTGGATCAGATGAAAAT

(TGCCATCCGGGCGAATCCTGCAAATTTACCACTCTCGTTGACCGAGAAAATGAGCA GGAC) and YT521 3' F1(GCAGGATTCGCCCGGATGGCAGCCCCCTCAC), Pact YT521 R1 (GGTGGAGATCCATGGTGGCGGAGCTCGAGCGCCTGTTGTCCCGATAGCTTCGCTG) for YT521-B, and cloned into a modified $p A C T$ using Gibson Assembly (NEB) also incorporating HA epitope tags at the C terminus. Constructs were verified by Sanger sequencing. The Sxl-HA expression vector was a gift from N. Perrimon ${ }^{32}$.

The YT521-B UAS construct was generated by sub-cloning the ORF from the pACT vector into a modified $p U A S T$ with primers YT521 adh F1
(AAGCAAAAAAGAAGTCACATGCCAAGAGCAGCCCGTAAACAAACGCTGCCGATGC GCGAG), YT521 adh F2
(TAGGGAATTGGGAATTCGAGATCTAAAGAGCCTGCTAAAGCAAAAAAGAAGTCAC ATGCC) and YT521 3' R1
(GGGCACGTCGTAGGGGTACAGACTAGTCTCGAGGCGCCTGTTGTCCCGATAGCTTC GCTG) by adding a translation initiation site from the $A d h$ gene and two copies of an HA tag to the end of the ORF. This construct was then also inserted into PBac\{y+-attB-3B\}VK00002 at 76A.

Essential parts of all DNA constructs were sequence verified.

Cell culture, transfections and immune-staining of S2 cells

S2 cells (ATCC) were cultured in Insect Express medium (Lonza) with 10\% heat-inactivated FCS and 1\% penicillin/streptomycin. The Drosophila S 2 cell line was verified to be male by analysing Sxl alternative splicing using species-specific primers Sx1 F2
(ATGTACGGCAACAATAATCCGGGTAG) and R2
(CATTGTAACCACGACGCGACGATG) to confirm species and gender (Ext. Data Fig 8). Transient transfections were done with Mirus Reagent (Bioline) according to the manufacturer's instruction and cells were assayed 48 h after transfection for protein expression or RNA binding of expressed proteins. To adhere S2 cells to a solid support, Concanavalin A (Sigma) coated glass slides (in $0.5 \mathrm{mg} / \mathrm{ml}$) were added 1 d prior to transfection, and cells were stained 48 h after transfection with antibodies as described. Transfections and follow up experiments were repeated at least once.

RNA extraction, RT-PCR, qPCR, immune-precipitations and Western blots

Total RNA was extracted using Tri-reagent (SIGMA) and reverse transcription was done with Superscript II (Invitrogen) according to the manufacturer's instructions using an oligodT17V primer. PCR for $S x l, t r a, m s l 2$ and $e w g$ was done for 30 cycles with $1 \mu l$ of cDNA with primers Sxl F2, Sx1 R2 or Sxl NP R3 (GAGAATGGGACATCCCAAATCCACG), Sxl M F1 (GCCCAGAAAGAAGCAGCCACCATTATCAC), \quad Sxl \quad M (GCGTTTCGTTGGCGAGGAGACCATGGG), tra FOR (GGATGCCGACAGCAGTGGAAC), tra REV (GATCTGGAGCGAGTGCGTCTG), msl-2 F1 (CACTGCGGTCACACTGGCTTCGCTCAG), msl-2 R1 (CTCCTGGGCTAGTTACCTGCAATTCCTC), ewg 4 F and ewg 5 R and quantified with ImageQuant (BioRad) ${ }^{22}$. Experiments included at least three biological replicates.

For qPCR reverse transcription was carried out on input and pull-down samples spiked with yeast RNA using ProtoScript II reverse transcriptase and random nanomers (NEB). Quantitative PCR was carried out using 2x SensiMix Plus SYBR Low ROX master mix (Quantace) using normalizer primers ACT1 F1 (TTACGTCGCCTTGGACTTCG) and ACT1 R1
(TACCGGCAGATTCCAAACCC) and for Sxl, Sxl ZB F1 (CACCACAATGGCAGCAGTAG) and Sxl ZB R1 (GGGGTTGCTGTTTGTTGAGT). Samples were run in triplicate for technical repeats and duplicate for biological repeats. Relative enrichment levels were determined by comparison with yeast $A C T 1$, using the $2^{-\Delta \Delta C^{\prime} T}$ method ${ }^{33}$.

For immunoprecipitations of $S x l$ RNA bound to Sxl or YTH proteins, S2 cells were fixed in PBS containing 1% formaldehyde for 15 min , quenched in 100 mM glycine and disrupted in IPBuffer ($150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris-HCL, pH 7.5, $1 \% \mathrm{NP}-40,5 \%$ glycerol). After IP with antiHA beads (Sigma) for 2 h in the presence of Complete protein inhibitors (Roche) and 40 U RNase inhibitors (Roche), IP precipitates were processed for $S x l$ RT-PCR using gene-specifc RT primer SP NP2 (CATTCCGGATGGCAGAGAATGGGAC) and PCR primers Sxl NP intF (GAGGGTCAGTCTAAGTTATATTCG) and Sx1 NP R3 as described ${ }^{31}$. Western blots were done as described using rat anti-HA (1:50, clone 3F10, Roche) and HRP coupled secondary goat anti-rat antibodies (Molecular Probes) ${ }^{34}$. All experiments were repeated at least once from biological samples.

Analysis of m6A levels

PolyA mRNA from at least two rounds of oligo dT selection was prepared according to the manufacturer (Promega). For each sample, $10-50 \mathrm{ng}$ of mRNA was digested with $1 \mu \mathrm{l}$ of Ribonuclease T1 ($1000 \mathrm{U} / \mu$ l; Fermentas) in a final volume of $10 \mu \mathrm{l}$ in polynucleotide kinase buffer (PNK, NEB) for 1 h at $37^{\circ} \mathrm{C}$. The 5^{\prime} end of the T1-digested mRNA fragments were then labeled using 10 U T4 PNK (NEB) and $1 \mu \mathrm{l}\left[\gamma^{-32} \mathrm{P}\right]$-ATP ($6000 \mathrm{Ci} / \mathrm{mmol}$; Perkin-Elmer). The labeled RNA was precipitated, resuspended in $10 \mu 1$ of 50 mM sodium acetate buffer (pH 5.5), and digested with P1 nuclease (Sigma-Aldrich) for 1 h at $37^{\circ} \mathrm{C}$. Two microliters of each sample
was loaded on cellulose TLC plates ($20 \times 20 \mathrm{~cm}$; Fluka) and run in a solvent system of isobutyric acid: $0.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}(5: 3, \mathrm{v} / \mathrm{v})$, as first dimension, and isopropanol:HCl:water (70:15:15, v/v/v), as the second dimension. TLCs were repeated from biological replicates. The identification of the nucleotide spots was carried out using m6A-containing synthetic RNA. Quantification of ${ }^{32} \mathrm{P}$ was done by scintillation counting (Packard Tri-Carb 2300TR). For the quantification of spot intensities on TLCs or gels, a storage phosphor screen (K-Screen; Kodak) and Molecular Imager FX in combination with QuantityOne software (BioRad) were used.

For immunoprecipitation of m6A mRNA, polyA mRNA was digested with RNase T1 and 5' labeled. The volume was then increased to $500 \mu \mathrm{l}$ with IP buffer $(150 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ TrisHCL, $\mathrm{pH} 7.5,0.05 \% \mathrm{NP}-40$). IPs were then done with $2 \mu \mathrm{l}$ of affinity-purified polyclonal rabbit m6A antibody (Synaptic Systems) and protein A/G beads (SantaCruz).

Polysome profiles

Whole fly extracts were prepared from 20-30 adult Drosophila previously frozen in liquid N_{2} and ground into fine powder in liquid N_{2}. Cells were then lysed in 0.5 ml lysis buffer $(0.3 \mathrm{M} \mathrm{NaCl}$, $15 \mathrm{mM} \mathrm{MgCl} l_{2}, 15 \mathrm{mM}$ Tris- HCl pH 7.5 , cycloheximide $100 \mu \mathrm{~g} / \mathrm{ml}$, heparin (sodium salt) 1 $\mathrm{mg} / \mathrm{ml}, 1 \%$ Triton X-100). Lysates were loaded on 12 ml sucrose gradients and spun for two h at 38000 rpm at $4{ }^{\circ} \mathrm{C}$. After the gradient centrifugation 1 ml fractions were collected and precipitated in equal volume of isopropanol. After several washes with 80% ethanol the samples were resuspended in water and processed. Experiments were done in duplicate.

Nuclear extract preparation and in vitro m6A methylation essays

Drosophila nuclear extracts were prepared from Kc cells as described ${ }^{35}$. Templates for in vitro transcripts were amplified from genomic DNA using the primers listed below and in vitro transcribed with T7 polymerase in the presence of $\left[\alpha-{ }^{32} \mathrm{P}\right]$-ATP. DNA templates and free nucleotides were removed by DNase I digestion and Probequant G-50 spin columns (GE Healthcare), respectively. Markers were generated by using in vitro transcripts with or without m6ATP (Jena Bioscience), which were then digested with RNase T1, kinased with PNK in the presence of $\left[\gamma_{-}{ }^{32} \mathrm{P}\right]$-ATP. After phenol extraction and ethanol precipitation, transcripts were digested to single nucleotides with P1 nuclease as above. For in vitro methylation, transcripts $\left(0.5-1 \times 10^{6} \mathrm{cpm}\right)$ were incubated for 45 min at $27^{\circ} \mathrm{C}$ in $10 \mu \mathrm{l}$ containing 20 mM potassium glutamate, 2 mM MgCl 2 , 1 mM DTT, $1 \mathrm{mM} \mathrm{ATP}$,0.5 mM S -adenosylmethionine disulfate tosylate (Abcam), 7.5\% PEG 8000, 20 U RNase protector (Roche) and 40\% nuclear extract. After phenol extraction and ethanol precipitation, transcripts were digested to single nucleotides with P1 nuclease as above, and then separated on cellulose F TLC plates (Merck) in 70% ethanol, previously soaked in $0.4 \mathrm{M} \mathrm{MgSO}_{4}$ and dried ${ }^{36}$. In vitro methylation assays were done from biological replicates at least in duplicates.

Primers to amplify parts of the $S x l$ alternatively spliced intron from genomic DNA for in vitro $\begin{array}{lllllllll}\text { transcription } & \text { with } & \text { T7 } & \text { polymerase } & \text { were } & \text { Sxl } & \text { A } & \text { T7 }\end{array}$ (GGAGCTAATACGACTCACTATAGGGAGAGGATATGTACGGCAACAATAATCCGGGT AG) and Sxl A R (CGCAGACGACGATCAGCTGATTCAAAGTGAAAG), Sxl B T7 F (GGAGCTAATACGACTCACTATAGGGAGAGCGCTCGCATTTATCCCACAGTCGCAC) and $\operatorname{Sxl} \mathrm{B} \quad \mathrm{R}$ (GGGTGCCCTCTGTGGCTGCTCTGTTTAC), Sxl C T7 F (GGAGCTAATACGACTCACTATAGGGGTCGTATAATTTATGGCACATTATTCAG) and Sxl C R (GGGAGTTTTGGTTCTTGTTTATGAGTTGGGTG), Sxl D T7 F
(GGAGCTAATACGACTCACTATAGGGAGAAAACTTCCAGCCCACACAACACACAC) and Sxl D R (GCATATCATATTCGGTTCATACATTTAGGTCTAAG), Sxl E T7 F (GGAGCTAATACGACTCACTATAGGGAGAGGGGAAGCAGCTCGTTGTAAAATAC) and $\mathrm{Sxl} \mathrm{E} \quad \mathrm{R}$ (GATGTGACGATTTTGCAGTTTCTCGACG), Sxl F T 7 F (GGAGCTAATACGACTCACTATAGGGAGAGGGGGATCGTTTTGAGGGTCAGTCTAAG) and Sxl NP2, Sxl C T7 F and Sxl C1 R (GTAGTTTTGCTCGGCATTTTATGACCTTGAGC), Sxl C2 F (GGAGCTAATACGACTCACTATAGGGAGACTCTCATTCTCTATATCCCTGTGCTGACC) and Sxl C 2 R (CTAATTTCGTGAGCTTGATTTCATTTTGCACAG), Sx1 C3 F (GGAGCTAATACGACTCACTATAGGGAGACTGTGCAAAATGAAATCAAGCTCACGA AATTAG) and Sxl C R, Sxl E T7 F and Sxl E1 R (AAAAAAATCAAAAAAATAATCACTTTTGGCACTTTTTCATCAC), Sxl E2 F (GGAGCTAATACGACTCACTATAGGGAGATGAAAAAGTGCCAAAAGTGATTATTTTT TTG), Sxl E2 R (AAAAGCATGATGTATTTTTTTTTTTTTGTACTTTCGAATCACCG), Sxl E3

F (GGAGCTAATACGACTCACTATAGGGAGACGGTGATTCGAAAGTACAAAAAAAAAAA AAATAC) and Sxl E R, Sxl C4 F (GAGCTAATACGACTCACTATAGGGAGAAATACTAAAACATCAAACCGCAAGCAGA GCAGC) and Sxl C4 R (GAGTGCCACTTCAAAATCTCAGATATGC), Sxl C5 F (CTAATACGACTCACTATAGGGAGACTCTTTTTTTTTTTCTTTTTTTTACTGTGCAAAA TG) and Sxl C5 R (AAAAAAATATGCAAAAAAAAAAAGGTAGGGCACAAAGTTCTCAATTAC), Sxl C6 F (GAGCTAATACGACTCACTATAGGGAGACTGTGCAAAATGAAATCAAGCTCACGAA

ATTAG) and Sxl C6 R (CAATTTCACTATATGTACGAAAACAAAAGTGAG), Sxl E4 F (GGAGCTAATACGACTCACTATAGGGAGAACCAAAATTCGACGTGGGAAGAAAC) and Sxl E4 R (TAATCACTTTTGGCACTTTTTCATCACATTAAC), Sxl E5 F (GGCTAATACGACTCACTATAGGGAGATTTTTTTGATTTTTTTAAAAGTGAAAATGTGC TCC) and Sxl E5 R (CACCGAAAAAAAATAAAAAAAAATAATCATGGGACTATACTAG), Sxl E6 F (GGCTAATACGACTCACTATAGGGAGACTTAAGTGCCAATATTTAAAGTGAAACCAA TTG) and Sxl E6 R (CCCCCAGTTATATTCAACCGTGAAATTCTGC).

Illumina sequencing and analysis of differential gene expression and AS

Total RNA was extracted from 15 pulverized head/thoraces previously flash frozen in liquid nitrogen, using Trizol reagent from white (w) control and $w ;$ dIME4 $4^{\Delta 22-3}$ females that have been outcrossed for several generations to $w ; D f(3 R)$ Exel6197 to equilibrate genetic background. Total RNA was treated with DNase I (Ambion) and stranded libraries for Illumina sequencing were prepared after polyA selection from total RNA $(1 \mu \mathrm{~g})$ with the TruSeq stranded mRNA kit (Illumina) using random primers for reverse transcription according to the manufacturer's instructions. Pooled indexed libraries were sequenced on an Illumina HiSeq2500 to yield 40-46 million paired-end 100 bp reads, and in a second experiment $14-19$ million single-end 125 bp reads for three controls and mutants each. After demultiplexing, sequence reads were aligned to the Drosophila genome (dmel-r6.02) using Tophat2.0.6 ${ }^{37}$. Differential gene expression was determined by Cufflinks-Cuffdiff and the FDR-correction for multiple testings to raw P values with $\mathrm{q}<0.05$ considered significant ${ }^{38}$. AS was analysed by SPANKI ${ }^{39}$ and validated for selected genes based on length differences detectable on agarose gels. Illumina sequencing, differential
gene expression and AS analysis was done by Fasteris (Switzerland). For dosage compensation analysis, differential expression analysis of X-linked genes versus autosomal genes in dIME4 ${ }^{\text {mull }}$ mutant was done by filtering Cuffdiff data by a p value expression difference significance of $\mathrm{p}<0.05$, which corresponds to a false discovery rate of 0.167 to detect subtle differences in expression consistent with dosage compensation. Visualization of sequence reads on gene models and splice junctions reads in Sashimi plots was done using Integrated Genome Viewer ${ }^{40}$. For validation of AS by RT-PCR as described above, the following primers were used: Gprk2 F1 (CCAACCAGCCGAAACTCACAGTGAAGC) and R1 (CAGGGTCTCGGTTTCAGACACAGGCGTC), $\mathrm{fl}(2) \mathrm{d}$ F1 (GCAGCAAACGAGAAATCAGCTCGCAGCGCAG) and $\mathrm{fl}(2) \mathrm{d} 1$ (CACATAGTCCTGGAATTCTTGCTCCTTG), A2bp1 (CTGTGGGGCTCAGGGGCATTTTTCCTTCCTC) and (CTCCTCTCCCGTGTGTCTTGCCACTCAAC), and A2bp1 R1 (CTCCTCTCCCGTGTGTCTGCACTCAAC), (GGGTTTCCACCTCGACCGGGAAAAGTCG) and (GCGTTTGCGGTTGCTGCTCGCGAAGAGAG), CG8312 F1 (GCGCGTGGCCTCCTTCTTATCGGCAGTC) and R1 (GCGTGGCCACTATAAAGTCCACCTCATC), Chas (CCGATTCGATTCGATTCGATCCTCTCTTC) and R1 (GTCGGTGTCCTCGGTGGTGTTGGTGGAG). GO enrichment analysis was done with FlyMine. For the analysis of uATGs, a custom R script was used to count the uATGs in 5'UTRs in all ENSEMBL isoforms of those genes which are differentially spliced in dIME4 mutants, that were then compared to the mean number of ATGs in all Drosophila ENSEMBL 5'UTRs using a t-test. Gene expression data were obtained from flybase.

Custom R Script

> fasta_file <-read.fasta("Soller_UTRs.fa", as.string=T) \# read fasta file
$>$ pattern <-"atg" \# the pattern to look for
$>$ dict <-PDict(pattern, max.mismatch $=0$)\#make a dictionary of the pattern to look for
$>$ seq <- DNAStringSet(unlist(fasta_file)[1:638])\#make the DNAstrinset from the DNAsequences ie all 638 UTRs related to the 156 genes identified in spanki $>$ result <-vcountPDict(dict,seq)\#count the pattern in each of the sequences

```
> write.csv2(result, "result.csv")
```

> fasta_file <-read.fasta("dmel-all-five_prime_UTR-r6.07.fa", as.string=T)\# read fasta file > pattern <-"atg" \# the pattern to look for
$>$ dict <-PDict(pattern, max.mismatch $=0$)\#make a dictionary of the pattern to look for
$>$ seq <- DNAStringSet(unlist(fasta_file)[1:29822])\#make the DNAstrinset from the DNAsequences ie all UTRs
$>$ result <-vcountPDict(dict,seq)\#count the pattern in each of the sequences
> write.csv2(result, "result_allutrs.csv")

Polytene chromosome preparations and stainings

dIME4 or YT521-B were expressed in salivary glands with C155-GAL4 from a $U A S$ transgene. Larvae were grown at $18{ }^{\circ} \mathrm{C}$ under non-crowded conditions. Salivary glands were dissected in PBS containing 4\% formaldehyde and 1% Triton X-100, and fixed for 5 min , and then for another 2 min in 50% acetic acid containing 4% formaldehyde, before placing them in lactoacetic acid (lactic acid:water:acetic acid, 1:2:3). Chromosomes were then spread under a
siliconized cover slip and the cover slip removed after freezing. Chromosome were blocked in PBT containing 0.2% BSA and 5% goat serum and sequentially incubated with primary antibodies (mouse anti-PolII H5, 1:1000, Abcam, or rabbit anti-histone H4, 1:200, Santa-Cruz, and rat anti-HA MAb 3F10, 1:50, Roche) followed by incubation with Alexa488- and/or Alexa647-coupled secondary antibodies (Molecular Probes) including DAPI ($1 \mu \mathrm{~g} / \mathrm{ml}$, Sigma). RNase A treatment (4 and $200 \mu \mathrm{~g} / \mathrm{ml}$) was done before fixation for 5 min . Ovaries were analyzed as previously described ${ }^{41}$.

RNA binding assays

The YTH domain (aa 207-423) was PCR amplified with oligos YTHdom F1 (CAGGGGCCCCTGTCGACTAGTCCCGGGAATGGTGGCGGCAACGGCCG) and R1 (CACGATGAATTGCGGCCGCTCTAGATTACTTGTAGATCACGTGTATACCTTTTTCTC GC) and cloned with Gibson assembly (NEB) into a modified pGEX expression vector to express a GST-tagged fusion protein. The YTH domain was cleaved while GST was bound to beads using Precession protease. Electrophoretic mobility shift assays and UV cross-linking assays were performed as described ${ }^{35,42}$. Quantification was done using ImageQuant (BioRad) by measuring free RNA substrate to calculate bound RNA from input. All binding assays were done at least in triplicates.

Data availability statement: RNA-seq data that support the findings of this study have been deposited at GEO under the accession number GSE79000 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79000), combining the single-end (GSE78999) and paired-end (GSE78992) experiments
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78999 and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78992, respectively). All other data generated or analysed during this study are included in this published article (and its Supplementary Information files).

Additional references

30 Haussmann, I. U., Hemani, Y., Wijesekera, T., Dauwalder, B. \& Soller, M. Multiple pathways mediate the sex-peptide-regulated switch in female Drosophila reproductive behaviours. Proc Biol Sci 280, 20131938 (2013).

31 Haussmann, I. U., Li, M. \& Soller, M. ELAV-mediated 3'-end processing of ewg transcripts is evolutionarily conserved despite sequence degeneration of the ELAVbinding site. Genetics 189, 97-107 (2011).

32 Yan, D. \& Perrimon, N. spenito is required for sex determination in Drosophila melanogaster. Proc Natl Acad Sci U S A 112, 11606-11611 (2015).

33 Livak, K. J. \& Schmittgen, T. D. Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408 (2001).

Haussmann, I. U., White, K. \& Soller, M. Erect wing regulates synaptic growth in Drosophila by integration of multiple signaling pathways. Genome Biol 9, R73 (2008).

35 Soller, M. \& White, K. ELAV inhibits 3'-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev 17, 2526-2538 (2003).

37 Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36 (2013).

38 Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562-578 (2012).

Sturgill, D. et al. Design of RNA splicing analysis null models for post hoc filtering of Drosophila head RNA-Seq data with the splicing analysis kit (Spanki). BMC Bioinformatics 14, 320 (2013).

Robinson, J. T. et al. Integrative genomics viewer. Nat Biotechnol 29, 24-26 (2011).
Soller, M., Bownes, M. \& Kubli, E. Control of oocyte maturation in sexually mature Drosophila females. Dev Biol 208, 337-351 (1999).

42 Soller, M. \& White, K. ELAV multimerizes on conserved AU4-6 motifs important for ewg splicing regulation. Mol Cell Biol 25, 7580-7591 (2005).

Extended Data figure legends

Extended Data Figure 1: m6A levels in unfertilized eggs. \mathbf{a} and \mathbf{b}, TLC from maternal total RNA (a) and mRNA (b) present in unfertilized eggs. The arrow indicates m6A.

Extended Data Figure 2: dIME4 supports Sxl in directing germline differentiation. a-c,

 Representative ovarioles of wild type (a), $d I M E 4^{\text {null }} / d I M E 4^{\text {null }}$ (b) and $S x l /+;$ dIME4 ${ }^{\text {null }} /+(\mathbf{c})$, and a tumerous ovary of a $S x l /+$; $d I M E 4^{\text {mull }} /+$ female (d). The tumorous ovary consisting mostly ofundifferentiated germ cells in (d) is indicated with a bracket and the oviduct with an asterisk. The scale bar in (d) is $100 \mu \mathrm{~m}$.

Extended Data Figure 3: dIME4 is required for female-specific splicing of Sxl, tra and msl-

 2. a-c, RT-PCR of $S x l$ (a), tra (b) and msl-2 (c) sex-specific splicing in wild-type males and females, and dIME ${ }^{\text {null }}$ males and females. 100 bp markers are shown on the left.
Extended Data Figure 4: AS of sex determination genes and differential expression of X-

 linked genes in dIME4 ${ }^{\text {null }}$ females. a-c, Sashimi plot depicting Tophat-mapped RNA sequencing reads and exon junction reads below the annotated gene model for sex-specific AS of tra, fru and $d s x$. The thickness of lines connecting splice junctions corresponds to the number of junction reads also shown. ss: splice site. d, Significantly ($\mathrm{p}<0.05, \mathrm{q}<0.166853$) differentially expressed gene expression values expressed as reads per kb of transcript per million mapped reads (RPKM) were $+1 \log$ transformed and Spearman r correlation values determined for Xlinked and autosomal genes in wild-type and dIME4 ${ }^{\text {null }}$ Drosophila. e, The proportion of autosomal and X-linked genes that were significantly either up- or down-regulated in dIME4 ${ }^{\text {null }}$ as compared to wild-type Drosophila were statistically compared using χ^{2} with Yates' continuity correction. GraphPad Prism was used for statistical comparisons. Similar results as for the single-read RNA-seq experiment were obtained for the pair-end RNA sequencing experiment.Extended Data Figure 5: m6A methylation sites map to the vicinity of $S x l$ binding sites. a, Schematic of the $S x l$ alternatively-spliced intron around the male specific exon depicting substrate RNAs used for in vitro m6A methylation. Solid lines depict fragments containing m6A
methylation and dashed lines fragments where m6A was absent. band c, 1D-TLC of in vitro methylated [$\left.{ }^{32} \mathrm{P}\right]$-ATP-labeled substrate RNAs shown in (a). Markers are in vitro transcripts in the absence (M1) or presence (M2) of m6A ${ }^{32} \mathrm{P}$-labeled after RNase T1 digestion. The right part in (b) and (c) shows an overexposure of the same TLC.

Extended Data Figure 6: RT-PCR validation of differential AS in dIME4 ${ }^{\text {null }}$. a-f, Sashimi

 plot depicting Tophat-mapped RNA sequencing reads and exon junction reads below the annotated gene model of indicated genes on the left, and RT-PCR of AS shown on the right using primers depicted on top. The thickness of lines connecting splice junctions corresponds to the number of junction reads also shown.
Extended Data Figure 7: dIME4 affects AS predominantly in 5'UTRs in genes with a higher

 than avarage number of upstream AUGs. a and b, Classification of differential AS in dIME4 $4^{\text {null }}$ according to splicing event (a) and location of the event in the mRNA (b). c, Quantification of upstream AUGs in all annotated 5'UTRs (white) or in alternative isoforms differentially spliced between wild type and $\operatorname{dIME4} 4^{\text {null }}$. All Drosophila UTRs were accessed in fasta fromat Flybase (version r6.07), (ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/current/fasta/). A custom R script was used to count the number of ATG sequences in all Drosophila 5'UTRs and from the genes identified by the Spanki analysis comprising 6385^{\prime} UTRs. A T test then used to statistically compare the number of ATGs present in the 6385^{\prime} UTRs of the differentially-spliced genes as compared to all 29822 Drosophila 5'UTRs. d and e, Classification of differentially alternative spliced genes in dIME $^{\text {null }}$ according to expression pattern (d) or function (e).Extended Data Figure 8: Drosophila S2 cells are male. RT-PCR of $S x l$ AS in females, males and S 2 cells. 100 bp markers are shown on the left.

Extended Data Figure 9: Preferential binding of the YTH domain of YT521-B to m6A-

 containing RNA. a, Coomassie-stained gel depicting the recombinant YTH domain (aa 207423) of YT521-B. b and c, Electrophoretic mobility shift assay of YTH domain binding to Sxl RNA fragment C with or without $\mathrm{m} 6 \mathrm{~A}(50 \%)$ and quantification of RNA bound to the YTH domain shown as mean \pm SE ($n=3$). Note that the YTH domain does not form a stable complex with RNA (asterisk) and that this complex falls apart during the run or forms aggregates in the well. d, In solution UV crosslinking of the YTH domain to $S x l$ RNA fragment C at $0.25 \mu \mathrm{M}, 1$ $\mu \mathrm{M}, 4 \mu \mathrm{M}$ and $16 \mu \mathrm{M}$ (lanes 1-4).Extended Data Figure 10: YT521-B co-localizes to sites of transcription. a-d, Polytene chromosomes from salivary glands expressing YT521-B::HA stained with anti-Pol II (red, b), anti-HA (green, c) and DNA (DAPI, blue, d), or merged (yellow, a). Scale bars are $5 \mu \mathrm{~m}$.

Extended Data Figure $1 \mid \mathrm{m}^{6} \mathrm{~A}$ levels in unfertilized eggs. a, b, Thin-layer chromatography from maternal total RNA (a) and mRNA (b) present in unfertilized eggs. The arrow indicates $\mathrm{m}^{6} \mathrm{~A}$.

Extended Data Figure $2 \mid$ Ime4 supports Sxl in directing germline differentiation. a-c, Representative ovarioles of wild-type (a), Ime $4^{\text {null }} /$ Ime $4^{\text {null }}$ (b) and Sxl/+;Ime $4^{\text {null } l+\text { females (c), and a tumerous ovary of a Sxl/+;Ime } 4^{\text {nul }} /+ \text { female (d). The tumorous ovary consisting mostly of undifferentiated }}$ germ cells in d is indicated with a bracket and the oviduct with an asterisk. Scale bar, $100 \mu \mathrm{~m}$ (applies to all panels).

Extended Data Figure $3 \mid$ Ime 4 is required for female-specific splicing of Sxl, tra and msl-2. a-c, RT-PCR of Sxl (a), tra (b) and msl-2 (c) sexspecific splicing in wild-type males and females, and Ime4 ${ }^{\text {null }}$ males and females. 100 -bp markers are shown on the left. AS, alternative splicing.

Extended Data Figure $4 \mid$ Alternative splicing of sex-determination genes and differential expression of X-linked genes in Ime $4^{m u l}$ females. a-c, Sashimi plot depicting Tophat-mapped RNA sequencing reads and exon junction reads below the annotated gene model for sex-specific alternative splicing of tra, fru and $d s x$. The thickness of lines connecting splice junctions corresponds to the number of junction reads also shown. ss, splice site. d, Significantly ($P<0.05, q<0.166853$) differentially expressed gene expression values expressed as reads per kb of transcript per million mapped reads (RPKM) were $\log [x+1]$-transformed and

Spearman r correlation values determined for X -linked and autosomal genes in wild-type and Ime $4^{\text {nul }}$ Drosophila. e, The proportion of autosomal and X-linked genes that were significantly either up- or downregulated in Ime $4^{\text {null }}$ as compared to wild-type Drosophila were statistically compared using χ^{2} with Yates' continuity correction. GraphPad Prism was used for statistical comparisons. Similar results as for the single-read RNAseq experiment were obtained for the paired-end RNA sequencing experiment.

