9 research outputs found

    Exercise-Induced Fitness Changes Correlate with Changes in Neural Specificity in Older Adults

    Get PDF
    Neural specificity refers to the degree to which neural representations of different stimuli can be distinguished. Evidence suggests that neural specificity, operationally defined as stimulus-related differences in functional magnetic resonance imaging (fMRI) activation patterns, declines with advancing adult age, and that individual differences in neural specificity are associated with individual differences in fluid intelligence. A growing body of literature also suggests that regular physical activity may help preserve cognitive abilities in old age. Based on this literature, we hypothesized that exercise-induced improvements in fitness would be associated with greater neural specificity among older adults. A total of 52 adults aged 59–74 years were randomly assigned to one of two aerobic-fitness training regimens, which differed in intensity. Participants in both groups trained three times a week on stationary bicycles. In the low-intensity (LI) group, the resistance was kept constant at a low level (10 Watts). In the high-intensity (HI) group, the resistance depended on participants’ heart rate and therefore typically increased with increasing fitness. Before and after the 6-month training phase, participants took part in a functional MRI experiment in which they viewed pictures of faces and buildings. We used multivariate pattern analysis (MVPA) to estimate the distinctiveness of neural activation patterns in ventral visual cortex (VVC) evoked by face or building stimuli. Fitness was also assessed before and after training. In line with our hypothesis, traininginduced changes in fitness were positively associated with changes in neural specificity. We conclude that physical activity may protect against age-related declines in neural specificity

    Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: caveats from a very revealing single clinical case

    Get PDF
    Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients

    Exercise-Induced Fitness Changes Correlate with Changes in Neural Specificity in Older Adults

    Get PDF
    Neural specificity refers to the degree to which neural representations of different stimuli can be distinguished. Evidence suggests that neural specificity, operationally defined as stimulus-related differences in functional magnetic resonance imaging (fMRI) activation patterns, declines with advancing adult age, and that individual differences in neural specificity are associated with individual differences in fluid intelligence. A growing body of literature also suggests that regular physical activity may help preserve cognitive abilities in old age. Based on this literature, we hypothesized that exercise-induced improvements in fitness would be associated with greater neural specificity among older adults. A total of 52 adults aged 59–74 years were randomly assigned to one of two aerobic-fitness training regimens, which differed in intensity. Participants in both groups trained three times a week on stationary bicycles. In the low-intensity (LI) group, the resistance was kept constant at a low level (10 Watts). In the high-intensity (HI) group, the resistance depended on participants’ heart rate and therefore typically increased with increasing fitness. Before and after the 6-month training phase, participants took part in a functional MRI experiment in which they viewed pictures of faces and buildings. We used multivariate pattern analysis (MVPA) to estimate the distinctiveness of neural activation patterns in ventral visual cortex (VVC) evoked by face or building stimuli. Fitness was also assessed before and after training. In line with our hypothesis, traininginduced changes in fitness were positively associated with changes in neural specificity. We conclude that physical activity may protect against age-related declines in neural specificity

    The dynamics of change in striatal activity following updating training

    No full text
    Increases in striatal activity have been suggested to mediate training-related improvements in working-memory ability. We investigated the temporal dynamics of changes in task-related brain activity following training of working memory. Participants in an experimental group and an active control group, trained on easier tasks of a constant difficulty in shorter sessions than the experimental group, were measured before, after about 1 week, and after more than 50 days of training. In the experimental group an initial increase of working-memory related activity in the functionally defined right striatum and anatomically defined right and left putamen was followed by decreases, resulting in an inverted u-shape function that relates activity to training over time. Activity increases in the striatum developed slower in the active control group, observed at the second posttest after more than 50 days of training. In the functionally defined left striatum, initial activity increases were maintained after more extensive training and the pattern was similar for the two groups. These results shed new light on the relation between activity in the striatum (especially the putamen) and the effects of working memory training, and illustrate the importance of multiple measurements for interpreting effects of training on regional brain activity. Hum Brain Mapp, 2013. (c) 2012 Wiley Periodicals, Inc

    Growth of Language-Related Brain Areas after Foreign Language Learning

    No full text
    Abstract in Undeterminedhe influence of adult foreign-language acquisition on human brain organization is poorly understood. We studied cortical thickness and hippocampal volumes of conscript interpreters before and after three months of intense language studies. Results revealed increases in hippocampus volume and in cortical thickness of the left middle frontal gyrus, inferior frontal gyrus, and superior temporal gyrus for interpreters relative to controls. The right hippocampus and the left superior temporal gyrus were structurally more malleable in interpreters acquiring higher proficiency in the foreign language. Interpreters struggling relatively more to master the language displayed larger gray matter increases in the middle frontal gyrus. These findings confirm structural changes in brain regions known to serve language functions during foreign-language acquisition

    Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults

    No full text
    This study investigates the effects of fitness changes on hippocampal microstructure and hippocampal volume. Fifty-two healthy participants aged 59-74 years with a sedentary lifestyle were randomly assigned to either of two levels of exercise intensity. Training lasted for six months. Physical fitness, hippocampal volumes, and hippocampal microstructure were measured before and after training. Hippocampal microstructure was assessed by mean diffusivity, which inversely reflects tissue densityhence, mean diffusivity is lower for more densely packed tissue. Mean changes in fitness did not differ reliably across intensity levels of training, so data were collapsed across groups. Multivariate modeling of pretest-posttest differences using structural equation modeling (SEM) revealed that individual differences in latent change were reliable for all three constructs. More positive changes in fitness were associated with more positive changes in tissue density (i.e., more negative changes in mean diffusivity), andmore positive changes in tissue density were associated with more positive changes in volume. We conclude that fitness-related changes in hippocampal volume may be brought about by changes in tissue density. The relative contributions of angiogenesis, gliogenesis, and/or neurogenesis to changes in tissue density remain to be identified. (C) 2015 Elsevier Inc. All rights reserved

    Aerobic exercise is associated with region-specific changes in volumetric, tensor-based, and fixel-based measures of white matter integrity in healthy older adults

    Get PDF
    White matter integrity and cognition have been found to decline with advancing adult age. Aerobic exercise may be effective in counteracting these declines. Generally, white matter integrity has been quantified using a volumetric measure (WMV) and with tensor-based parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), the validity of which appears to be compromised in the presence of crossing fibers. Fixel-based analysis techniques claim to overcome this problem by yielding estimates of fiber density (FD), cross-section (FC), and their product (FDC) in multiple directions per voxel. In a sample of 61 healthy older adults (63–76 years old), we quantified changes in white matter integrity following an aerobic exercise intervention with the commonly used volumetric and tensor-based metrics (WMV, FA, MD) and with fixel-based metrics (FD, FC, FDC). We investigated the associations of changes in these white matter parameters with changes in cardiovascular fitness and Digit Symbol Substitution task (DSST) performance, a marker of perceptual speed. In line with previous findings, we observed maintained WMV in the corpus callosum of exercisers, and positive change-change correlations between WMV and fitness, and between WMV and perceptual speed. For FA and MD, group differences in change opposite to those hypothesized were found in the corpus callosum, posterior corona radiata, and superior longitudinal fasciculus at an uncorrected significance threshold. Likewise, regions in superficial WM in the prefrontal cortex showed group differences in FD and FDC change, uncorrected, with more positive change in controls and more negative change in exercisers. Finally, changes in FD and FDC were found to be inversely correlated to changes in fitness and DSST performance. The present results corroborate previous findings of WMV changes, but cast doubt on current physiological interpretations of both tensor-based and fixel-based indicators of white matter properties in the context of exercise intervention studies
    corecore