40 research outputs found

    OpenGSL: A Comprehensive Benchmark for Graph Structure Learning

    Full text link
    Graph Neural Networks (GNNs) have emerged as the de facto standard for representation learning on graphs, owing to their ability to effectively integrate graph topology and node attributes. However, the inherent suboptimal nature of node connections, resulting from the complex and contingent formation process of graphs, presents significant challenges in modeling them effectively. To tackle this issue, Graph Structure Learning (GSL), a family of data-centric learning approaches, has garnered substantial attention in recent years. The core concept behind GSL is to jointly optimize the graph structure and the corresponding GNN models. Despite the proposal of numerous GSL methods, the progress in this field remains unclear due to inconsistent experimental protocols, including variations in datasets, data processing techniques, and splitting strategies. In this paper, we introduce OpenGSL, the first comprehensive benchmark for GSL, aimed at addressing this gap. OpenGSL enables a fair comparison among state-of-the-art GSL methods by evaluating them across various popular datasets using uniform data processing and splitting strategies. Through extensive experiments, we observe that existing GSL methods do not consistently outperform vanilla GNN counterparts. However, we do observe that the learned graph structure demonstrates a strong generalization ability across different GNN backbones, despite its high computational and space requirements. We hope that our open-sourced library will facilitate rapid and equitable evaluation and inspire further innovative research in the field of GSL. The code of the benchmark can be found in https://github.com/OpenGSL/OpenGSL.Comment: 9 pages, 4 figure

    Cases report: MRI findings of asymptomatically familial subependymal heterotopia with filamin A gene abnormality

    Get PDF
    Subependymal heterotopia (SEH) is a rare neuronal migration disorder consisting of gray matter nodules along the lateral ventricular walls and is often associated with other brain malformations. Despite most SEH cases showing epilepsy during their lifetimes, very few patients with asymptomatically familial SEH tend to cause misdiagnosis or missed diagnosis. We present four familial SEH cases without any positive symptoms and medical history, including two fetuses, who were diagnosed by MRI and confirmed by genetic testing with mutation of filamin A. This report emphasizes the role of MRI in the recognition of SEH at an early age of gestation and in asymptomatically familial SEH. MRI provides a fast, repeatable, reliable, and cheap choice for detecting and screening familial SEH

    Grafted human-induced pluripotent stem cells-derived oligodendrocyte progenitor cells combined with human umbilical vein endothelial cells contribute to functional recovery following spinal cord injury

    Get PDF
    Background: Spinal cord injury (SCI) is a devastating disease that causes extensive damage to oligodendrocytes and neurons leading to demyelination and axonal degeneration. In this study, we co-transplanted cell grafts containing oligodendrocyte progenitor cells (OPCs) derived from human-induced pluripotent stem cells (iPSCs) combined with human umbilical vein endothelial cells (HUVECs), which were reported to promote OPCs survival and migration, into rat contusion models to promote functional recovery after SCI. Methods: OPCs were derived from iPSCs and identified by immunofluorescence at different time points. Functional assays in vitro were performed to evaluate the effect of HUVECs on the proliferation, migration, and survival of OPCs by co-culture and migration assay, as well as on the neuronal axonal growth. A combination of OPCs and HUVECs was transplanted into the rat contusive model. Upon 8 weeks, immunofluorescence staining was performed to test the safety of transplanted cells and to observe the neuronal repairment, myelination, and neural circuit reconstruction at the injured area; also, the functional recovery was assessed by Basso, Beattie, and Bresnahan open-field scale, Ladder climb, SEP, and MEP. Furthermore, the effect of HUVECs on grafts was also determined in vivo. Results: Data showed that HUVECs promote the proliferation, migration, and survival of OPCs both in vitro and in vivo. Furthermore, 8 weeks upon engraftment, the rats with OPCs and HUVECs co-transplantation noticeably facilitated remyelination, enhanced functional connection between the grafts and the host and promoted functional recovery. In addition, compared with the OPCs-alone transplantation, the co-transplantation generated more sensory neurons at the lesion border and significantly improved the sensory functional recovery. Conclusions: Our study demonstrates that transplantation of OPCs combined with HUVECs significantly enhances both motor and sensory functional recovery after SCI. No significance was observed between OPCs combined with HUVECs group and OPCs-alone group in motor function recovery, while the sensory function recovery was significantly promoted in OPCs combined with HUVECs groups compared with the other two groups. These findings provide novel insights into the field of SCI research

    Breath-, air- and surface-borne SARS-CoV-2 in hospitals

    Get PDF
    The COVID-19 pandemic has brought an unprecedented crisis to the global health sector. When discharging COVID-19 patients in accordance with throat or nasal swab protocols using RT-PCR, the potential risk of reintroducing the infection source to humans and the environment must be resolved. Here, 14 patients including 10 COVID-19 subjects were recruited; exhaled breath condensate (EBC), air samples and surface swabs were collected and analyzed for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) in four hospitals with applied natural ventilation and disinfection practices in Wuhan. Here we discovered that 22.2% of COVID-19 patients (n = 9), who were ready for hospital discharge based on current guidelines, had SARS-CoV-2 in their exhaled breath (~10⁵ RNA copies/m³). Although fewer surface swabs (3.1%, n = 318) tested positive, medical equipment such as face shield frequently contacted/used by healthcare workers and the work shift floor were contaminated by SARS-CoV-2 (3–8 viruses/cm²). Three of the air samples (n = 44) including those collected using a robot-assisted sampler were detected positive by a digital PCR with a concentration level of 9–219 viruses/m³. RT-PCR diagnosis using throat swab specimens had a failure rate of more than 22% in safely discharging COVID-19 patients who were otherwise still exhaling the SARS-CoV-2 by a rate of estimated ~1400 RNA copies per minute into the air. Direct surface contact might not represent a major transmission route, and lower positive rate of air sample (6.8%) was likely due to natural ventilation (1.6–3.3 m/s) and regular disinfection practices. While there is a critical need for strengthening hospital discharge standards in preventing re-emergence of COVID-19 spread, use of breath sample as a supplement specimen could further guard the hospital discharge to ensure the safety of the public and minimize the pandemic re-emergence risk

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    A review on solar pavement and photovoltaic/thermal (PV/T) system

    No full text
    In recent years, highway construction field has made huge efforts to develop energy harvesting solutions, such as solar pavement, which mainly on photovoltaic (PV) pavement and thermal energy harvesting pavement. Due to low energy utilisation efficiency and short operating life of PV cells without heat dissipation, the concept of pavement integrated photovoltaic/thermal system (PIPVT) is proposed, which organically combines the above two main solar pavements. Since there is no available research on PIPVT technology for roads, a comprehensive review on building integrated photovoltaic/thermal (BIPVT) system, the PV pavement, and thermal energy harvesting pavement were made to explore the technical feasibility of PIPVT. The initial design of PIPVT has been proposed according to the findings of our previous works, which can improve solar comprehensive utilisation efficiency, as well as the life of PV cells in theory. This review can provide new ideas for future research on energy harvesting pavement
    corecore