926 research outputs found

    A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites

    Get PDF
    Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted d15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of d15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases

    Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Get PDF
    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system

    Epitaxial Lead Chalcogenides on Si for Mid-IR Detectors and Emitters Including Cavities

    Get PDF
    Lead chalcogenide (IV-VI narrow-gap semiconductor) layers on Si or BaF2(111) substrates are employed to realize two mid-infrared optoelectronic devices for the first time. A tunable resonant cavity enhanced detector is realized by employing a movable mirror. Tuning is across the 4μm to 5.5μm wavelength range, and linewidth is <0.1μm. Due to the thin (0.3μm) PbTe photodiode inside the cavity, a higher sensitivity at higher operating temperatures was achieved as compared to conventional thick photodiodes. The second device is an optically pumped vertical external-cavity surface-emitting laser with PbTe-based gain layers. It emits at ∼5μm wavelength and with output power up to 50mW pulsed, or 3mW continuous wave at 100

    Changes in the Isotopic Signature of Atmospheric Nitrous Oxide and Its Global Average Source During the Last Three Millennia

    Get PDF
    Nitrous oxide (N2O) is a strong greenhouse gas whose mole fraction in the atmosphere has increased over the industrial period. We present a new set of isotope measurements of N2O in air extracted from ice cores covering the last 3,000 years. For the preindustrial (PI) atmosphere, we find an average N2O mole fraction of (267 ± 1) nmol/mol and average tropospheric N2O isotopic values of δ15Nav PI = (9.5 ± 0.1)‰, δ18OPI = (47.1 ± 0.2)‰, δ15Nα PI = (17.8 ± 0.4)‰, and δ15Νβ PI = (1.2 ± 0.4)‰. From PI to modern times all isotope signatures decreased with a total change of δ15Nav = (−2.7 ± 0.2)‰, δ18O = (−2.5 ± 0.4)‰, δ15Nα = (−2.0 ± 0.7)‰, and δ15Νβ (−3.5 ± 0.7)‰. Interestingly, the temporal evolution is not the same for δ15Nav and δ18O. δ18O trends are relatively larger during the early part, and δ15Nav trends are larger during the late part of the industrial period, implying a decoupling of sources over the industrial period. Using a mass balance model, we determined the isotopic composition of the total average N2O source. Assuming that the total present source is the sum of a constant natural source and an increasing anthropogenic source, this anthropogenic source has an isotopic signature of δ15Nav source,anthrop = (−15.0 ± 2.6)‰, δ18Osource,anthrop = (30.0 ± 2.6)‰, δ15Nα source,anthrop = (−4.5 ± 1.7)‰, and δ15Nβ source,anthrop = (−24.0 ± 8.4)‰. The 15N site preference of the source has increased since PI times, which is indicative of a relative shift from denitrification to nitrification sources, consistent with agricultural emissions playing a major role in the N2O increase.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Get PDF
    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ˜ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe

    High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in situ production

    Get PDF
    We present high-resolution measurements of carbon monoxide (CO) concentrations from a shallow ice core of the North Greenland Eemian Ice Drilling project (NEEM-2011-S1). An optical-feedback cavity-enhanced absorption spectrometer (OF-CEAS) coupled to a continuous melter system performed continuous, online analysis during a four-week measurement campaign. This analytical setup generated stable measurements of CO concentrations with an external precision of 7.8 ppbv (1σ), based on repeated analyses of equivalent ice core sections. However, this first application of this measurement technique suffered from a poorly constrained procedural blank of 48 ± 25 ppbv and poor accuracy because an absolute calibration was not possible. The NEEM-2011-S1 CO record spans 1800 yr and the long-term trends within the most recent section of this record (i.e., post 1700 AD) resemble the existing discrete CO measurements from the Eurocore ice core. However, the CO concentration is highly variable (75–1327 ppbv range) throughout the ice core with high frequency (annual scale), high amplitude spikes characterizing the record. These CO signals are too abrupt and rapid to reflect atmospheric variability and their prevalence largely prevents interpretation of the record in terms of atmospheric CO variation. The abrupt CO spikes are likely the result of in situ production occurring within the ice itself, although the unlikely possibility of CO production driven by non-photolytic, fast kinetic processes within the continuous melter system cannot be excluded. We observe that 68% of the CO spikes are observed in ice layers enriched with pyrogenic aerosols. Such aerosols, originating from boreal biomass burning emissions, contain organic compounds, which may be oxidized or photodissociated to produce CO within the ice. However, the NEEM-2011-S1 record displays an increase of ~0.05 ppbv yr<sup>−1</sup> in baseline CO level prior to 1700 AD (129 m depth) and the concentration remains elevated, even for ice layers depleted in dissolved organic carbon (DOC). Thus, the processes driving the likely in situ production of CO within the NEEM ice may involve multiple, complex chemical pathways not all related to past fire history and require further investigation

    Constraining N2O emissions since 1940 using firn air isotope measurements in both hemispheres

    Get PDF
    N2O is currently the third most important anthropogenic greenhouse gas in terms of radiative forcing and its atmospheric mole fraction is rising steadily. To quantify the growth rate and its causes over the past decades, we performed a multi-site reconstruction of the atmospheric N2O mole fraction and isotopic composition using new and previously published firn air data collected from Greenland and Antarctica in combination with a firn diffusion and densification model. The multi-site reconstruction showed that while the global mean N2O mole fraction increased from (290±1)nmolmol-1 in 1940 to (322±1)nmolmol-1 in 2008, the isotopic composition of atmospheric N2O decreased by (-2.2±0.2)% for δ15Nav, (-1.0±0.3)% for δ18O, (-1.3±0.6)% for δ15Nα, and (-2.8±0.6)% for δ15Nβ over the same period. The detailed temporal evolution of the mole fraction and isotopic composition derived from the firn air model was then used in a two-box atmospheric model (comprising a stratospheric box and a tropospheric box) to infer changes in the isotopic source signature over time. The precise value of the source strength depends on the choice of the N2O lifetime, which we choose to fix at 123 years. The average isotopic composition over the investigated period is δ15Nav Combining double low line (-7.6±0.8)% (vs. air-N2), δ18O Combining double low line (32.2±0.2)% (vs. Vienna Standard Mean Ocean Water-VSMOW) for δ18O, δ15Nα Combining double low line (-3.0±1.9)% and δ15Nβ Combining double low line (-11.7±2.3)%. δ15Nav, and δ15Nβ show some temporal variability, while for the other signatures the error bars of the reconstruction are too large to retrieve reliable temporal changes. Possible processes that may explain trends in 15N are discussed. The 15N site preference (Combining double low line δ15Nα-δ15Nβ) provides evidence of a shift in emissions from denitrification to nitrification, although the uncertainty envelopes are large

    Nitrate stable isotopes and major ions in snow and ice samples from four Svalbard sites

    Get PDF
    Increasing reactive nitrogen (N-r) deposition in the Arctic may adversely impact N-limited ecosystems. To investigate atmospheric transport of N-r to Svalbard, Norwegian Arctic, snow and firn samples were collected from glaciers and analysed to define spatial and temporal variations (1 10 years) in major ion concentrations and the stable isotope composition (delta N-15 and delta O-18) of nitrate (NO3-) across the archipelago. The delta N-15(NO3-) and delta O-18(NO3-) averaged -4 parts per thousand and 67 parts per thousand in seasonal snow (2010-11) and -9 parts per thousand and 74 parts per thousand in firn accumulated over the decade 2001-2011. East-west zonal gradients were observed across the archipelago for some major ions (non-sea salt sulphate and magnesium) and also for delta N-15(NO3-) and delta O-18(NO3-) in snow, which suggests a different origin for air masses arriving in different sectors of Svalbard. We propose that snowfall associated with long-distance air mass transport over the Arctic Ocean inherits relatively low delta N-15(NO3-) due to in-transport N isotope fractionation. In contrast, faster air mass transport from the north-west Atlantic or northern Europe results in snowfall with higher delta N-15(NO3-) because in-transport fractionation of N is then time-limited

    &quot;EDML1&quot;: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years.

    Get PDF
    A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via &lt;sup&gt;10&lt;/sup&gt;Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core
    corecore