1,423 research outputs found
A survey of partial differential equations in geometric design
YesComputer aided geometric design is an area
where the improvement of surface generation techniques
is an everlasting demand since faster and more accurate
geometric models are required. Traditional methods
for generating surfaces were initially mainly based
upon interpolation algorithms. Recently, partial differential
equations (PDE) were introduced as a valuable
tool for geometric modelling since they offer a number
of features from which these areas can benefit. This work
summarises the uses given to PDE surfaces as a surface
generation technique togethe
Temperature dependence of non-linear electrical conduction behavior in a screen-printed multi-component nanocomposite
Nanocomposite materials are of growing applications importance in many areas, particularly touch sensitive surfaces. Here, current-voltage measurements were performed over a range of temperatures and static compressive loadings on a new variant of a multi-component, screen-printed nanocomposite ink, in order to understand the physical nature of the electrical transport behavior. A physical model, combining a linear percolative electrical conductance and a highly non-linear conductance, that is ascribed to field assisted quantum tunneling, was successful in describing the temperature dependence of the I-V. This provides a theoretical underpinning for conduction in these functional nanocomposites
Vapor sensing properties of a conductive polymer composite containing Nickel particles with nano-scale surface features
This paper presents an unusual conductive polymer composite, produced by Peratech Ltd under the trademark QTCâą, which has many vapor sensing applications. Nickel particles are intimately coated by an elastomeric binder such that no percolative conduction can occur. However, the nickel particles are shown to possess spiky nanoscale surface features, which promote conduction by a field-assisted quantum tunneling mechanism. Granular QTCâą can be dispersed into a polymer matrix to produce a vapor sensor. Under exposure to vapor, the polymer swells and the resistance of the composite increases. In this work, granular sensors are subjected to acetone and tetrahydrofuran (THF) vapors. The response for THF shows an increase in resistance of a factor of 108, over a time-scale of a few seconds. This response is larger and faster than many conventional vapor sensing composites. This is a significantly larger response than that obtained historically for the same sensor, suggesting that some degree of sensor aging is desirable. The response and subsequent recovery can be explained by a case II diffusion model, and linked to Hildebrand solubility parameters of the vapor and polymer components
A numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions
The main goal of this paper is to assess the limits of validity, in the
regime of low concentration and strong Coulomb coupling (high molecular
charges), for a simple perturbative approximation to the radial distribution
functions (RDF), based upon a low-density expansion of the potential of mean
force and proposed to describe protein-protein interactions in a recent
Small-Angle-Scattering (SAS) experimental study. A highly simplified Yukawa
(screened Coulomb) model of monomers and dimers of a charged globular protein
(-lactoglobulin) in solution is considered. We test the accuracy of the
RDF approximation, as a necessary complementary part of the previous
experimental investigation, by comparison with the fluid structure predicted by
approximate integral equations and exact Monte Carlo (MC) simulations. In the
MC calculations, an Ewald construction for Yukawa potentials has been used to
take into account the long-range part of the interactions in the weakly
screened cases. Our results confirm that the perturbative first-order
approximation is valid for this system even at strong Coulomb coupling,
provided that the screening is not too weak (i.e., for Debye length smaller
than monomer radius). A comparison of the MC results with integral equation
calculations shows that both the hypernetted-chain (HNC) and the Percus-Yevick
(PY) closures have a satisfactory behavior under these regimes, with the HNC
being superior throughout. The relevance of our findings for interpreting SAS
results is also discussed.Comment: Physical Review E, in press (2005
A novel screen-printed multi-component nanocomposite ink with a pressure sensitive electrical resistance functionality
Here, a novel functional ink is described that is composed of multiple nanoscale components and exhibits pronounced touch pressure sensitive electrical properties ideal for applications in switching, sensing and touch sensitive surfaces. The ink can be screen-printed and the as-printed ink displays a large and reproducible touch pressure sensitive electrical resistance and, in contrast to some other composite materials, the resistance changes occur down to the smallest applied pressures. Detailed scanning electron microscopy shows the complex nanoscale structure of the composite that is critical for the electrical behavior. Current-voltage measurements, under static compressive loading, show monotonic non-linear behavior at low compression and ohmic behavior at higher loadings
Scientific Perspectives, Feminist Standpoints, and Non-silly Relativism
Defences of perspectival realism are motivated, in part, by an attempt to find a middle ground between the realist intuition that science seems to tell us a true story about the world, and the Kuhnian intuition that scientific knowledge is historically and culturally situated. The first intuition pulls us towards a traditional, absolutist scientific picture, and the second towards a relativist one. Thus, perspectival realism can be seen as an attempt to secure situated knowledge without entailing epistemic relativism. A very similar motivation is behind feminist standpoint theory, a view which aims to capture the idea that knowledge is socially situated, whilst retaining some kind of absolutism. Elsewhere I argue that the feminist project fails to achieve this balance; its commitment to situated knowledge unavoidably entails epistemic relativism (though of an unproblematic kind), which allows them to achieve all of their feminist goals. In this paper I will explore whether the same arguments apply to perspectival realism. And so I will be asking whether perspectival realism too is committed to an unproblematic kind of relativism, capable of achieving scientific goals; or, whether it succeeds in carving out a third view, between or beyond the relativism/absolutism dichotomy
What young people want from health-related online resources: a focus group study
The growth of the Internet as an information source about health, particularly amongst young people, is well established. The aim of this study was to explore young people's perceptions and experiences of engaging with health-related online content, particularly through social media websites. Between February and July 2011 nine focus groups were facilitated across Scotland with young people aged between 14 and 18 years. Health-related user-generated content seems to be appreciated by young people as a useful, if not always trustworthy, source of accounts of other people's experiences. The reliability and quality of both user-generated content and official factual content about health appear to be concerns for young people, and they employ specialised strategies for negotiating both areas of the online environment. Young people's engagement with health online is a dynamic area for research. Their perceptions and experiences of health-related content seem based on their wider familiarity with the online environment and, as the online environment develops, so too do young people's strategies and conventions for accessing it
Mesoscopic modelling of conducting and semiconducting polymers
We present generalized Monte Carlo calculations to assess the effects of texture and related key factors on the properties of polymer-based light emitting diodes. We, describe one class of mesoscopic model giving specific realizations of the polymer network. The model, with simple physically based rules, shows the effects of polymer structural order on current flow, trapping and radiative and non-radiative charge recombination within the polymer layer. Interactions between charges are included explicitly, as are image interactions with the electrodes. It is important that these Coulomb interactions are not simplified to an averaged space charge, since the local interactions can lead to effective trapping of charge, even in the absence of defective chains or impurity trapping. There proves to be an important role for trapping, in which charges are localized for times long compared with transit times. The competition between current flow, trapping and radiative and non-radiative charge recombination means that some of the trends are not intuitively obvious. For example, if radiative recombination occurs only on short polymer chains, as is the case for certain polymer systems, the internal efficiency appears to saturate for a concentration of these shorter luminescent chains of about 20-30%. As the proportion of shorter chains increases, trapping increases, whereas current efficiency decreases. Our approach provides a natural link between atomistic models of individual polymer molecules and the macroscopic descriptions of device modelling. Such mesoscopic models provide a means to design better film structures, and hence to optimize the effectiveness of new organic materials in a range of applications
Football in the community schemes: Exploring the effectiveness of an intervention in promoting healthful behaviour change
This study aims to examine the effectiveness of a Premier League football clubâs Football in the Community (FitC) schemes intervention in promoting positive healthful behaviour change in children. Specifically, exploring the effectiveness of this intervention from the perspectives of the participants involved (i.e. the researcher, teachers, children and coaches). A range of data collection techniques were utilized including the principles of ethnography (i.e. immersion, engagement and observations), alongside conducting focus groups with the children. The results allude to the intervention merely âkeeping active children activeâ via (mostly) fun, football sessions. Results highlight the important contribution the âcoachâ plays in the effectiveness of the intervention. Results relating to working practice (i.e. coaching practice and coach recruitment) are discussed and highlighted as areas to be addressed. FitC schemes appear to require a process of positive organizational change to increase their effectiveness in strategically attending to the health agenda
Mapping participation: a systematic analysis of diverse public participation in the UK energy system
This paper develops a novel approach to mapping diverse forms of participation and public engagement, using the example of the UK energy system. It builds on emerging systemic accounts of participation, which go beyond a focus on individual instances of participation, to gain an understanding of broader patterns and connections. Our approach, which forms part of an emerging family of methods that seek to map across multiple forms of public involvement in issues and systems, draws on systematic review methodology and a relational co-productionist conception of participation. The findings of a systematic mapping of public participation related to the UK energy system 2010â2015 are presented, comprising 258 cases in total. The mapping analysis reveals patterns as to the what (energy objects and issues), how (procedural formats) and who (publics) of energy participation in the UK, which go far beyond the conventionally assumed forms and sites of public participation around energy. Implications for how the dynamics of âwhole systemâ energy participation are represented and the role of approaches to mapping participation in governing energy transitions are considered
- âŠ