81 research outputs found

    Determining the Type, Redshift, and Phase of a Supernova Spectrum

    Get PDF
    We present an algorithm to identify the types of supernova spectra, and determine their redshift and phase. This algorithm, based on the correlation techniques of Tonry & Davis, is implemented in the SuperNova IDentification code (SNID). It is used by members of the ESSENCE project to determine whether a noisy spectrum of a high-redshift supernova is indeed of type Ia, as opposed to, e.g., type Ib/c. Furthermore, by comparing the correlation redshifts obtained using SNID with those determined from narrow lines in the supernova host galaxy spectrum, we show that accurate redshifts (with a typical error < 0.01) can be determined for SNe Ia for which a spectrum of the host galaxy is unavailable. Last, the phase of an input spectrum is determined with a typical accuracy of ~3 days.Comment: 10 pages, 7 figures. To appear in "The Multicoloured Landscape of Compact Objects and their Explosive Progenitors: Theory vs Observations" (Cefalu, Sicily, June 2006). Eds. L. Burderi et al. (New York: AIP

    A one-dimensional Chandrasekhar-mass delayed-detonation model for the broad-lined Type Ia supernova 2002bo

    Full text link
    We present 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer simulations of a Chandrasekhar-mass delayed-detonation model which synthesizes 0.51 Msun of 56Ni, and confront our results to the Type Ia supernova (SN Ia) 2002bo over the first 100 days of its evolution. Assuming only homologous expansion, this same model reproduces the bolometric and multi-band light curves, the secondary near-infrared (NIR) maxima, and the optical and NIR spectra. The chemical stratification of our model qualitatively agrees with previous inferences by Stehle et al., but reveals significant quantitative differences for both iron-group and intermediate-mass elements. We show that +/-0.1 Msun (i.e., +/-20 per cent) variations in 56Ni mass have a modest impact on the bolometric and colour evolution of our model. One notable exception is the U-band, where a larger abundance of iron-group elements results in less opaque ejecta through ionization effects, our model with more 56Ni displaying a higher near-UV flux level. In the NIR range, such variations in 56Ni mass affect the timing of the secondary maxima but not their magnitude, in agreement with observational results. Moreover, the variation in the I, J, and K_s magnitudes is less than 0.1 mag within ~10 days from bolometric maximum, confirming the potential of NIR photometry of SNe Ia for cosmology. Overall, the delayed-detonation mechanism in single Chandrasekhar-mass white dwarf progenitors seems well suited for SN 2002bo and similar SNe Ia displaying a broad Si II 6355 A line. Whatever multidimensional processes are at play during the explosion leading to these events, they must conspire to produce an ejecta comparable to our spherically-symmetric model.Comment: Accepted for publication in MNRAS. The hydrodynamical input and synthetic spectra are available at https://www-n.oca.eu/supernova/home.html . Minor changes from v1: corrected several typos and updated acknowledgement

    Evidence for sub-Chandrasekhar-mass progenitors of Type Ia supernovae at the faint end of the width-luminosity relation

    Full text link
    The faster light-curve evolution of low-luminosity Type Ia supernovae (SNe Ia) suggests that they could result from the explosion of white dwarf (WD) progenitors below the Chandrasekhar mass (MChM_{\rm Ch}). Here we present 1D non-LTE time-dependent radiative transfer simulations of pure central detonations of carbon-oxygen WDs with a mass (M_\rm{tot}) between 0.88 M⊙_{\odot} and 1.15 M⊙_{\odot}, and a 56Ni^{56}\rm{Ni} yield between 0.08 M⊙_{\odot} and 0.84 M⊙_{\odot}. Their lower ejecta density compared to MChM_{\rm Ch} models results in a more rapid increase of the luminosity at early times and an enhanced γ\gamma-ray escape fraction past maximum light. Consequently, their bolometric light curves display shorter rise times and larger post-maximum decline rates. Moreover, the higher M(^{56}\rm{Ni})/M_\rm{tot} ratio at a given 56Ni^{56}\rm{Ni} mass enhances the temperature and ionization level in the spectrum-formation region for the less luminous models, giving rise to bluer colours at maximum light and a faster post-maximum evolution of the B−VB-V colour. For sub-MChM_{\rm Ch} models fainter than MB≈−18.5M_B\approx -18.5 mag at peak, the greater bolometric decline and faster colour evolution lead to a larger BB-band post-maximum decline rate, ΔM15(B)\Delta M_{15}(B). In particular, all of our previously-published MChM_{\rm Ch} models (standard and pulsational delayed detonations) are confined to ΔM15(B)<1.4\Delta M_{15}(B) < 1.4 mag, while the sub-MChM_{\rm Ch} models with M_\rm{tot}\lesssim 1 M⊙_{\odot} extend beyond this limit to ΔM15(B)≈1.65\Delta M_{15}(B)\approx 1.65 mag for a peak MB≈−17M_B\approx -17 mag, in better agreement with the observed width-luminosity relation (WLR). Regardless of the precise ignition mechanism, these simulations suggest that fast-declining SNe Ia at the faint end of the WLR could result from the explosion of WDs whose mass is significantly below the Chandrasekhar limit.Comment: 10 pages, 6 figures. Accepted for publication in MNRA

    Radiative Properties of Pair-instability Supernova Explosions

    Full text link
    We present non-LTE time-dependent radiative-transfer simulations of pair-instability supernovae (PISNe) stemming from red-supergiant (RSG), blue-supergiant (BSG) and Wolf-Rayet (WR) star rotation-free progenitors born in the mass range 160-230Msun, at 10^-4 Zsun. Although subject to uncertainties in convection and stellar mass-loss rates, our initial conditions come from physically-consistent models that treat evolution from the main-sequence, the onset of the pair-production instability, and the explosion phase. With our set of input models characterized by large 56Ni and ejecta masses, and large kinetic energies, we recover qualitatively the Type II-Plateau, II-peculiar, and Ib/c light-curve morphologies, although they have larger peak bolometric luminosities (~10^9 to 10^10 Lsun) and a longer duration (~200d). We discuss the spectral properties for each model during the photospheric and nebular phases, including Balmer lines in II-P and II-pec at early times, the dominance of lines from intermediate-mass-elements (IMEs) near the bolometric maximum, and the strengthening of metal line blanketing thereafter. Having similar He-core properties, all models exhibit similar post-peak spectra that are strongly blanketed by FeII and FeI lines, characterized by red colors, and that arise from photospheres/ejecta with a temperature of <4000K. Combined with the modest line widths after bolometric peak, these properties contrast with those of known super-luminous SNe suggesting that PISNe are yet to be discovered. Being reddish, PISNe will be difficult to observe at high redshift except when they stem from RSG explosions, in which case they could be used as metallicity probes and distance indicators.Comment: accepted to MNRA

    Stable nickel production in Type Ia supernovae: A smoking gun for the progenitor mass?

    Full text link
    At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit (MCh ~ 1.4 Msun) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between MCh and sub-MCh events. In particular, it is thought that the higher-density ejecta of MCh WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni II] lines in late-time spectra. We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from MCh and sub-MCh progenitors. We explore the potential for lines of [Ni II] at 7378 \AA\ and 1.94 microns in late-time spectra to serve as a diagnostic of the exploding WD mass, using nonlocal thermodynamic equilibrium radiative-transfer simulations with the CMFGEN code. We find that the radiative proton-capture reaction 57Co(p,gamma)58Ni is the dominant production mode for 58Ni in both MCh and sub-MCh models, while the alpha-capture reaction on 54Fe has a negligible impact on the final 58Ni yield. More importantly, we demonstrate that the lack of [Ni II] lines in late-time spectra of sub-MCh events is not always due to an under-abundance of stable Ni; rather, it results from the higher ionization of Ni in the inner ejecta. Conversely, the strong [Ni II] lines predicted in our 1D MCh models are completely suppressed when 56Ni is sufficiently mixed with the innermost layers, which are rich in stable iron-group elements. [Ni II] lines in late-time SN Ia spectra have a complex dependency on the abundance of stable Ni, which limits their use in distinguishing among MCh and sub-MCh progenitors. However, we argue that a low-luminosity SN Ia displaying strong [Ni II] lines would most likely result from a Chandrasekhar-mass progenitor. [Abridged]Comment: Accepted for publication in A&A, replaced with accepted version (+ corrected a typo in the conclusions: "overabundance" replaced with "over abundance"). 20 pages, 10 figures. Model spectra available at https://zenodo.org/record/552808

    Family dispute: do Type IIP supernova siblings agree on their distance?

    Full text link
    Context: Type II supernovae provide a direct way to estimate distances through the expanding photosphere method, which is independent of the cosmic distance ladder. A recently introduced Gaussian process-based method allows for a fast and precise modelling of spectral time series, which puts accurate and computationally cheap Type II-based absolute distance determinations within reach. Aims: The goal of the paper is to assess the internal consistency of this new modelling technique coupled with the distance estimation empirically, using the spectral time series of supernova siblings, i.e. supernovae that exploded in the same host galaxy. Methods: We use a recently developed spectral emulator code, which is trained on \textsc{Tardis} radiative transfer models and is capable of a fast maximum likelihood parameter estimation and spectral fitting. After calculating the relevant physical parameters of supernovae we apply the expanding photosphere method to estimate their distances. Finally, we test the consistency of the obtained values by applying the formalism of Bayes factors. Results: The distances to four different host galaxies were estimated based on two supernovae in each. The distance estimates are not only consistent within the errors for each of the supernova sibling pairs, but in the case of two hosts they are precise to better than 5\%. Conclusions: Even though the literature data we used was not tailored for the requirements of our analysis, the agreement of the final estimates shows that the method is robust and is capable of inferring both precise and consistent distances. By using high-quality spectral time series, this method can provide precise distance estimates independent of the distance ladder, which are of high value for cosmology.Comment: 20 pages, 20 figures, 6 tables, Accepted in A&

    Towards More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere

    Full text link
    Motivated by the recognition that variation in the optical transmission of the atmosphere is probably the main limitation to the precision of ground-based CCD measurements of celestial fluxes, we review the physical processes that attenuate the passage of light through the Earth's atmosphere. The next generation of astronomical surveys, such as PanSTARRS and LSST, will greatly benefit from dedicated apparatus to obtain atmospheric transmission data that can be associated with each survey image. We review and compare various approaches to this measurement problem, including photometry, spectroscopy, and LIDAR. In conjunction with careful measurements of instrumental throughput, atmospheric transmission measurements should allow next-generation imaging surveys to produce photometry of unprecedented precision. Our primary concerns are the real-time determination of aerosol scattering and absorption by water along the line of sight, both of which can vary over the course of a night's observations.Comment: 41 pages, 14 figures. Accepted PAS

    Lightcurves of Type Ia Supernovae from Near the Time of Explosion

    Get PDF
    We present a set of 11 type Ia supernova (SN Ia) lightcurves with dense, pre-maximum sampling. These supernovae (SNe), in galaxies behind the Large Magellanic Cloud (LMC), were discovered by the SuperMACHO survey. The SNe span a redshift range of z = 0.11 - 0.35. Our lightcurves contain some of the earliest pre-maximum observations of SNe Ia to date. We also give a functional model that describes the SN Ia lightcurve shape (in our VR-band). Our function uses the "expanding fireball" model of Goldhaber et al. (1998) to describe the rising lightcurve immediately after explosion but constrains it to smoothly join the remainder of the lightcurve. We fit this model to a composite observed VR-band lightcurve of three SNe between redshifts of 0.135 to 0.165. These SNe have not been K-corrected or adjusted to account for reddening. In this redshift range, the observed VR-band most closely matches the rest frame V-band. Using the best fit to our functional description of the lightcurve, we find the time between explosion and observed VR-band maximum to be 17.6+-1.3(stat)+-0.07(sys) rest-frame days for a SN Ia with a VR-band Delta m_{-10} of 0.52mag. For the redshifts sampled, the observed VR-band time-of-maximum brightness should be the same as the rest-frame V-band maximum to within 1.1 rest-frame days.Comment: 35 pages, 18 figures, 15 tables; Higher quality PDF available at http://ctiokw.ctio.noao.edu/~sm/sm/SNrise/index.html; AJ accepte

    The Multi-Epoch Nearby Cluster Survey: type Ia supernova rate measurement in z~0.1 clusters and the late-time delay time distribution

    Full text link
    We describe the Multi-Epoch Nearby Cluster Survey (MENeaCS), designed to measure the cluster Type Ia supernova (SN Ia) rate in a sample of 57 X-ray selected galaxy clusters, with redshifts of 0.05 < z < 0.15. Utilizing our real time analysis pipeline, we spectroscopically confirmed twenty-three cluster SN Ia, four of which were intracluster events. Using our deep CFHT/Megacam imaging, we measured total stellar luminosities in each of our galaxy clusters, and we performed detailed supernova detection efficiency simulations. Bringing these ingredients together, we measure an overall cluster SN Ia rate within R_{200} (1 Mpc) of 0.042^{+0.012}_{-0.010}^{+0.010}_{-0.008} SNuM (0.049^{+0.016}_{-0.014}^{+0.005}_{-0.004} SNuM) and a SN Ia rate within red sequence galaxies of 0.041^{+0.015}_{-0.015}^{+0.005}_{-0.010} SNuM (0.041^{+0.019}_{-0.015}^{+0.005}_{-0.004} SNuM). The red sequence SN Ia rate is consistent with published rates in early type/elliptical galaxies in the `field'. Using our red sequence SN Ia rate, and other cluster SNe measurements in early type galaxies up to z∌1z\sim1, we derive the late time (>2 Gyr) delay time distribution (DTD) of SN Ia assuming a cluster early type galaxy star formation epoch of z_f=3. Assuming a power law form for the DTD, \Psi(t)\propto t^s, we find s=-1.62\pm0.54. This result is consistent with predictions for the double degenerate SN Ia progenitor scenario (s\sim-1), and is also in line with recent calculations for the double detonation explosion mechanism (s\sim-2). The most recent calculations of the single degenerate scenario delay time distribution predicts an order of magnitude drop off in SN Ia rate \sim 6-7 Gyr after stellar formation, and the observed cluster rates cannot rule this out.Comment: 35 pages, 14 figures, ApJ accepte
    • 

    corecore