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Abstract
Species in cold-limited biomes are expected to expand their distribution ranges in response to climate warming. For plants, 
range shifts can only occur via successful recruitment beyond their current distribution limit. However, many environmental 
and ecological filters can act upon recruitment and establishment, thereby potentially limiting the expected climate-driven 
shifts. In this study, we investigate potential mechanical and chemical constraints that vegetation above the tall shrubline in 
alpine and Arctic tundra could impose upon the successful establishment of willow species in the Canadian Western Arctic. 
We collected willow seeds from an alpine and an Arctic shrubline and conducted germination trials to test (1) for seedbed 
preferences among three natural and one experimentally scarified seedbeds, and (2) for vulnerability to allelopathic chemi-
cals produced by ericaceous dwarf shrub species. We found that germination was almost four times higher on manually 
exposed bare ground than on intact, herbaceous vegetation. Seeds of two willow species, Salix arctica and Salix pulchra, 
were not affected by leaf extracts from dwarf shrubs, Cassiope tetragona and Vaccinum uliginosum, but the germination of 
Salix richardsonii was reduced by as much as 24% in the presence of chemicals from C. tetragona. Our results suggest that 
biotic interactions could limit the predicted expansion of tall shrubs in the tundra by interfering with germination. Seemingly 
species-specific responses highlight the need for replicated studies across a wider range of species combinations. Potential 
range shifts may not occur as a uniform translocation of the shrubline, but could change the composition of the plant com-
munity by filtering out certain species.

Keywords Allelopathy · Seedbed · Germination · Seedlings · Shrubline · Tundra

Introduction

Ecosystem boundaries are in part controlled by temperature, 
and have shifted with past variations in climate as species 
migrated to track their climatic optimum (Davis and Shaw 
2001). Under the current rapid rates of warming at the global 
scale (IPCC 2013), latitudinal or elevational advances in 
distribution limits have recently been observed in most taxa 
including invertebrates, plants, birds, and mammals (Chen 
et al. 2011). In tundra ecosystems, tall shrub species are 
projected to expand their range up mountain slopes and 

northward to higher latitudes (Post et al. 2009; Myers-Smith 
et al. 2011).

In sessile species such as plants, range shifts occur 
via the recruitment and establishment of new individuals 
beyond the current distribution limit. Because of the mul-
tiple environmental and ecological filters acting on regen-
eration (Fig. 1), these shifts are spatially heterogeneous 
and often lag changes in climate (Corlett and Westcott 
2013; Ash et al. 2016). For instance, treelines have only 
advanced in around half of the sites studied in a global 
meta-analysis (Harsch et al. 2009). Similarly, although 
tundra shrubs have been expanding in the circumpo-
lar region over the last half-century (Myers-Smith et al. 
2011), most of the observed increases in growth and repro-
duction have only led to population infilling, and range 
shifts remain mostly anecdotal (but see Myers-Smith and 
Hik 2017). Some of the non-climatic limitations interfer-
ing with range expansion may include species traits like 
dispersal ability (Brooker et al. 2007; Kambo and Danby 
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2017), and a wide range of biotic interactions (reviewed 
in HilleRisLambers et al. 2013).

Species interactions are affected by climate change, 
and in turn control community assembly in environments 
where new species could meet their temperature require-
ments (Tylianakis et al. 2008; Gilman et al. 2010; Van 
der Putten et al. 2010). In plant communities, interactions 
with herbivores (Olofsson et al. 2009; Munier et al. 2010; 
Christie et al. 2015), soil biota (Van Grunsven et al. 2007), 
pathogens (Olofsson et al. 2011) and other plants (Grau 
et al. 2012; Liang et al. 2016) may all promote or constrain 
range shifts. It is therefore critical to better understand 
biotic interactions and incorporate them in species distri-
bution models (Brooker et al. 2007; Hellmann et al. 2012; 
Meier et al. 2012).

In addition to direct competition for resources, several 
other types of plant–plant interactions can interfere with 
the establishment of a species beyond its current range. 
The vegetation already in place can prevent seeds from 
reaching a suitable seedbed. For instance, conifers at the 
treeline have been shown to become preferentially estab-
lished after disturbance exposing the bare ground (Dufour 
Tremblay and Boudreau 2011). In addition, vegetation 
may chemically interfere with seed germination when 
allelopathic species are present. Allelopathy is the pro-
duction of toxic compounds by some plants; when leached 
into the ground, these chemicals can affect the germina-
tion, growth, and survival of other species (Wardle et al. 
1998). For example, some conifer seeds and seedlings 
are vulnerable to chemicals released by ericaceous dwarf 
shrubs (Nilsson and Zackrisson 1992; Dufour Tremblay 
et al. 2012). It is currently unknown whether these biotic 

controls of treeline dynamics act similarly upon shrublines 
at higher latitudes and elevations.

To investigate whether plant–plant interactions have the 
potential to limit range shifts of tall shrubs into the tun-
dra, we carried out germination experiments using seeds 
of widespread and rapidly expanding willow species (Salix 
spp.) collected from an Arctic and an alpine shrubline in 
the Yukon Territory. Our research question was the fol-
lowing: Does vegetation above the tall shrubline affect the 
germination of shrub seeds? We experimentally tested two 
potential mechanisms of interference: (1) vegetation acts as 
a physical barrier preventing shrub seeds from reaching a 
suitable seedbed (M1 in Fig. 1); and (2) chemicals released 
by ericaceous dwarf shrubs inhibit germination (M2 in 
Fig. 1). Correspondingly, we predicted (1) that seeds of the 
tall willow shrub, Salix pulchra Cham. would germinate to 
a higher extent on bare ground than on vegetated ground, 
and (2) that seeds of the tall willows S. pulchra and Salix 
richardsonii Hooker and of the dwarf willow Salix arctica 
Pall., would germinate to a lesser extent when exposed to 
potentially allelopathic leachates from the ericaceous dwarf 
shrubs, Vaccinium uliginosum L. And Cassiope tetragona 
(L.) D. Don.

Materials and methods

Study sites

We conducted two germination experiments (scarification 
and allelopathy) on Qikiqtaruk-Herschel Island (69.568°N, 
138.918°W), a Yukon territorial park in Northern Canada. 

Fig. 1  Biological constraints (orange) potentially acting as ecological filters on the process of regeneration (green) above the shrubline with the 
mechanisms of seedbeds (mechanism 1) and allelopathy (mechanism 2) highlighted in bold, the foci of this study. (Color figure online)
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The allelopathy experiment was replicated in the Klu-
ane region of the Southwest Yukon Territory (61.027°N, 
138.411°W, Fig. 2). These two sites are 1000 km apart and 
represent both Arctic and alpine tundra ecosystems where 
tall shrubs are thought to be expanding their ranges.

Qikiqtaruk is underlain by ice-rich permafrost (Burn and 
Zhang 2009) and harbours several types of tundra vegeta-
tion (described by Smith et al. 1989), including the Herschel 
type characterised by moist acidic tussock tundra, and the 
Komakuk type comprising herbaceous tundra disturbed by 
freeze–thaw processes. Alpine habitats of the Kluane Region 
are underlain by bedrock containing permafrost. The alpine 
zone is characterised by willow-dominated tall shrub tundra 
transitioning to dwarf shrub and herbaceous tundra at around 
1600-1900 m elevation (Myers-Smith 2011).

On Qikiqtaruk, both experiments were set up in front 
of a window in an unheated warehouse. The average daily 
minimum, mean and maximum temperatures during the 
10 days spanning both experiments were 7.4/12.0/18.0 °C, 
respectively, measured by iButton Thermochron data loggers 
(± 1 °C, model DS1921G-F5, Dallas Semiconductor Cor-
poration, Dallas, TX, USA) with hourly recording. In Klu-
ane, the allelopathy experiment was set up in a laboratory 
(average daily minimum, mean and maximum temperatures 
were 18.9/21.0/24.1 °C, respectively, measured as above 
over 9 days). A scarification experiment was initially also set 
up in Kluane, but coincided with a week of unusually high 
temperatures. The laboratory not being climate controlled, 
this resulted in the seedlings drying out and dying within 
48 h after emerging, and the experiment was discontinued.

Study species

Salix pulchra and Salix richardsonii are willow species 
with an erect growth form. They are widespread in the 
Western Arctic and dominant species at our study sites; on 
Qikiqtaruk, they approximately reach their northern distri-
bution limit (Argus 2007). Salix arctica is a dwarf willow 
widely distributed in the circumpolar region all the way up 
to the High Arctic, over 80°N (Argus 2007). It is a dominant 
species on Qikiqtaruk and could therefore greatly contribute 
to woody plant encroachment there. However, germination 
of this species is highly variable both spatially and tempo-
rally, and thus expansion could be limited by regeneration 
failures (Boulanger-Lapointe et al. 2016). This is why we 
included this species in the experiment despite it being far 
from its leading range edge. Willows are capable of spread-
ing clonally, but while this certainly contributes to the 
infilling of existing populations (Myers-Smith et al. 2011), 
colonisation of new sites in a range shift context requires 
establishment from seed. Willows tend to be early-succes-
sional plants characterised by fast growth rates (Bret-Harte 
et al. 2002) and the production of great numbers of small, 
wind-dispersed seeds that can recolonize sites rapidly after 
disturbances (Brinkman 1974; Forbes et al. 2001).

Vaccinium uliginosum, a blueberry, is an ericaceous 
deciduous dwarf shrub known to have allelopathic effects 
on conifer seeds (Dufour Tremblay et al. 2012). Cassiope 
tetragona is an ericaceous evergreen dwarf shrub for which 
no allelopathic effects have yet been reported; however, 
it has been shown to interfere with the growth of Arctic 

Fig. 2  Location of the two field sites in the Western Canadian Arctic and details of the experiments carried out at each research station using 
seeds from local shrubline tundra sites
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graminoids (Michelsen et al. 2012). These dwarf shrubs 
typically come in later during succession (Lambert 1972) 
and have higher investments in reproduction and defences.

Scarification experiment

Our first objective was to test whether seedbed type influ-
enced willow germination. The four seedbeds tested were (1) 
moss-dominated; (2) grass-dominated; (3) forb-dominated; 
and (4) scarified. For each treatment, we collected four discs 
(10 cm diameter, ca. 3 cm deep) of undisturbed tundra veg-
etation on Qikiqtaruk. Cover of the target vegetation type 
for the moss, grass and forb treatments was over 90% on 
each disc. For the scarified discs, we randomly collected 
discs with a mixed cover of grasses and forbs and carefully 
stripped them of all above-ground vegetation to expose the 
organic soil. Samples were collected in a ca. 50-m-by-50-m 
plot on a south-facing ridge belonging to the Komakuk 
vegetation type (Smith et al. 1989) and brought back to the 
warehouse.

Catkins of Salix pulchra were collected at a nearby site. 
Only ripe catkins were collected, and no more than 10 cat-
kins per individual shrub were harvested to reduce genetic 
bias. Seeds were all pooled together before sowing on the 
discs.

On all discs, 36 seeds were sown in a six-by-six arrange-
ment, with a toothpick marking the emplacement of each 
row to facilitate monitoring. The discs were misted twice 
daily with a spray-bottle containing distilled water to prevent 
seeds from drying. Emergence was monitored daily until no 
further germination occurred.

Allelopathy experiment

Our second objective was to test whether willow seeds were 
vulnerable to potentially toxic compounds leached from the 
leaves of two ericaceous dwarf shrubs. Allelopathy experi-
ments were run at both field sites (Fig. 2). In the alpine shrub 
tundra of Printer’s Pass (Ruby Range mountains, Kluane), 
we collected ca. 200 ripe catkins of S. pulchra and S. rich-
ardsonii following the sampling protocol described in the 
previous section. Around 100 g of fresh leaves of Vaccin-
ium uliginosum and Cassiope tetragona were collected in 
the same area. Leachates were prepared by soaking 75 g of 
leaves in 500 mL of distilled water for 24 h to obtain a 15% 
solution (Dufour Tremblay et al. 2012).

On Qikiqtaruk, around 150 catkins were collected for 
S. pulchra, S. richardsonii and S. arctica. As V. uligino-
sum is not locally abundant, we only used a leachate of C. 
tetragona in this experiment. The leaf extract was prepared 
as described above.

Seeds were sown on filter paper in 9-mm Petri dishes 
(25 seeds per dish in Kluane; 50 seeds per dish on Herschel 

Island). At the start of the experiment, 3 mL of either leaf 
extract (C. tetragona or V. uliginosum) or distilled water 
(control treatment) were put in every dish. We added 2 mL 
of the same treatments the following day, then kept all dishes 
moist as needed with distilled water for the duration of the 
experiment. In Kluane, we set up eight replicate dishes of the 
factorial design (all combinations of species and treatments). 
On Qikiqtaruk, we set up four replicate dishes. The dishes 
were spatially randomised and rotated daily to avoid spatial 
effects. We monitored emergence daily until no further ger-
mination occurred.

Statistical analyses

Analyses were conducted using generalised linear models 
with a binomial distribution (logit link function) to account 
for germination rates being constrained between 0 and 1. 
Germination rates were not zero-inflated. For the scarifica-
tion experiment, which was conducted with a single species, 
we used seedbed as the explanatory variable. For the allelop-
athy experiments, we ran separate models for the two study 
locations, using treatment (control, V. uliginosum extract, C. 
tetragona extract) and willow species as interacting explan-
atory variables. When means differed significantly among 
treatments, we conducted Tukey’s post hoc tests using the 
“lsmeans” package. All analyses were conducted in R v. 
3.3.2 (R Core Team 2016).

Results

Scarification experiment

Emergence of Salix pulchra was significantly higher on scar-
ified ground than on forb- or grass-dominated ground, and 
intermediate on moss-covered ground (Fig. 3; Table 1A). 
Germination started within 24 h of sowing and ceased after 
4 days. 

Allelopathy experiment

On Qikiqtaruk (Fig. 4a; Table 1B), S. pulchra and S. rich-
ardsonii had high and similar germination rates, but the ger-
mination of S. richardsonii was reduced in the presence of 
C. tetragona leaf extract, while that of S. pulchra was not. 
Salix arctica experienced much lower germination that was 
not affected by the allelopathic treatment.

In Kluane (Fig. 4b; Table 1C), the germination of S. rich-
ardsonii was slightly lower than that of S. pulchra, and like 
on Qikiqtaruk, was reduced in the presence of C. tetragona 
leaf extract compared to the control. Extract of V. uliginosum 
had no effect on either S. richardsonii or S. pulchra.
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Discussion

In this study, we demonstrated that willow seeds preferen-
tially germinated on bare ground. Moreover, our experi-
ments revealed a potential vulnerability of some shrub spe-
cies to chemical interference from ericaceous dwarf shrubs. 
Together, these findings have implications for expected range 
shifts and community composition changes under climate 
warming. Our results suggest that the community already 
in place above the shrubline may physically or chemically 
impede shrub recruitment. Biotic interactions are likely to 
shape future vegetation trajectories in the tundra, and it is 
critical to gain a better understanding of the mechanisms 
involved to predict more accurately future range expansion 
of shrub species.

Scarification experiment

Willows are pioneer species in boreal and tundra succession, 
producing a large number of small seeds that can be wind-
dispersed over long distances and rapidly colonise disturbed 
sites (Walker et al. 1986). Our dedicated germination study 
found that emergence of willow seedlings was higher on bare 
ground than on ground covered by herbaceous vegetation, 
supporting succession theory. These results also agree with 
observations of higher abundance and performance of shrubs 
on ground disturbed by thermokarst processes (Lantz et al. 
2009). More widely, our results align with treeline studies 
that have shown increased conifer recruitment on exposed 
mineral soil (Dufour Tremblay and Boudreau 2011). Few 
similar experiments have been conducted with shrub species, 
but our results are in accordance with those of Graae et al. 

Fig. 3  Germination of Salix pulchra presenting higher on scarified 
ground than on forb- or grass-covered ground, and intermediate on 
moss. Dots represent binomial model estimates (error bars are 95% 
confidence intervals), and letters indicate significant differences 
between treatments, as identified by Tukey’s post hoc test

Table 1  Model outputs from binomial logistic regressions to explain 
germination of tundra willows as a function of (A) ground layer com-
position and (B–C) allelopathic effects of ericaceous dwarf shrubs at 
two field sites

Species codes are SP Salix pulchra, SR: Salix richardsonii, SA Salix 
arctica. Allelopathic treatments are coded C for control, CAS for 
Cassiope tetragona leachate, and VAC for Vaccinium uliginosum 
leachate. For each model, pairwise post hoc contrasts are presented 
using Tukey’s post hoc test, and significant contrasts are bolded

Estimate SE z value p

(A) Scarification—Qikiqtaruk
 Scarified (intercept) 1.04 0.19 5.37 < 0.0001
 Moss − 1.04 0.26 − 4.07 < 0.0001
 Forb − 1.80 0.26 − 6.82 < 0.0001
 Grass − 2.42 0.28 − 8.51 < 0.0001

Contrasts z ratio
Scarified—moss 1.04 0.26 4.07 0.0003
Scarified—forb 1.80 0.26 6.82 < 0.0001
Scarified—grass 2.42 0.28 8.51 < 0.0001
Moss—forb 0.76 0.24 3.10 0.0106
Moss—grass 1.38 0.27 5.17 < 0.0001
Forb—grass 0.62 0.27 2.27 0.1058
Sample size: 16
Null deviance: 156.15 on 15 df
Residual deviance: 58.21 on 12 df
(B) Allelopathy—Qikiqtaruk
 Intercept 0.87 0.16 5.62 < 0.0001
 TreatmentCAS 0.31 0.23 1.36 0.1747
 SpeciesSR − 0.02 0.22 − 0.11 0.9130
 SpeciesSA − 2.23 0.23 − 9.52 < 0.0001
 TreatmentCAS:SpeciesSR − 0.94 0.31 − 3.02 0.0025
 TreatmentCAS:SpeciesSA − 0.16 0.33 − 0.49 0.6263

Contrasts z ratio
SP: C– CAS − 0.31 0.23 − 1.36 0.1747
SR: C–CAS 0.62 0.21 2.98 0.0028
SA: C–CAS − 0.15 0.24 − 0.61 0.5447
Sample size: 24
Null deviance: 298.185 on 23 df
Residual deviance: 36.565 on 18 df
(C) Allelopathy—Kluane
 Intercept 0.10 0.16 6.25 < 0.0001
 TreatmentCAS − 0.26 0.22 − 1.20 0.2294
 TreatmentVAC − 0.46 0.21 − 2.14 0.0326
 SpeciesSR − 0.85 0.21 − 4.01 < 0.0001
 TreatmentCAS:SpeciesS R − 0.24 0.30 − 0.81 0.4200
 TreatmentVAC:SpeciesSR 0.12 0.30 0.41 0.6806

Contrasts z ratio
 SP: C–CAS 0.50 0.22 1.20 0.4521
 SP: C–VAC 0.46 0.22 2.14 0.0825
 SP: CAS–VAS − 0.16 0.21 0.95 0.6120
 SR: C–CAS 0.50 0.20 2.50 0.0335
 SR: C–VAC 0.34 0.20 1.70 0.2059
 SR: CAS–VAC − 0.16 0.20 − 0.81 0.6982

Sample size: 48
Null deviance: 110.254 on 47 df
Residual deviance: 42.834 on 42 df
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(2011), who found consistently higher germination of tundra 
species on bare ground.

Willows typically produce short-lived seeds that must 
germinate within a few days of ripening (Bliss 1958; Brink-
man 1974). It therefore seems likely that when seeds are 
dispersed on dense, tall vegetation, they cannot always reach 
the ground and meet their moisture requirement for germi-
nating, and rapidly lose viability. On the contrary, seeds 
that fall onto bare ground can germinate within a day, as we 
observed during this study. We found that the moss seedbed 
had intermediate rates of germination, which could be due 
to high water retention capacity compared to herbaceous 
vegetation. In stressful environments, mosses can facilitate 
recruitment by sheltering seedlings from herbivores and 
temperature extremes (Wheeler et al. 2011; Lett et al. 2017).

We cannot generalise our observations to all tundra 
shrub species, as it is likely that species-specific traits like 
seed longevity play an important role in these interactions. 
Nonetheless, our results suggest that vegetation above the 
shrubline might act as a physical barrier for establishment of 
some dominant tundra shrub species. In a context of vegeta-
tion encroachment and decrease in bare ground at our field 

site (Myers-Smith et al. in review), and in the tundra biome 
in general (Elmendorf et al. 2012), there might be limited 
opportunities for shrubline advance. This could lead to an 
increasing reliance on disturbance for regeneration (Lantz 
et al. 2010; Frost et al. 2013) as optimal recruitment micro-
sites become sparser.

Allelopathy experiment

At both sites, the germination of Salix richardsonii was 
reduced when seeds were exposed to C. tetragona leaf 
extracts. In addition to producing allelopathic compounds, 
ericaceous species can change soil nutrient status and chemi-
cal properties (Bloom and Mallik 2006). Previously, nega-
tive effects of C. tetragona on the growth of graminoids have 
been explained by the labile carbon in the extracts promoting 
nutrient uptake by soil biota, thereby depleting resources 
for plants (Michelsen et al. 1995). As our seeds were placed 
directly on sterile filter paper without the possibility of third-
party interactions, our results suggest that the leaves of C. 
tetragona may contain allelopathic compounds affecting the 
germination of some species. Alternatively, other chemi-
cal properties of the solution, such as reduced pH, could 
have affected germination. Edaphic factors are important in 
controlling shrub distribution: for instance, Salix pulchra is 
more tolerant to acidic soils than S. richardsonii (Swanson 
2015). More work will be needed to validate our findings 
and identify the precise mechanism of interference. The very 
low germination of Salix arctica is unsurprising: unlike the 
other two species, it is a late disperser with conditionally 
dormant seeds (Densmore and Zasada 1983).

All three of our focal research species are found at the 
shrubline in the Kluane region (Myers-Smith and Hik 2017) 
and are widely distributed on Qikiqtaruk (Smith et al. 1989), 
yet they each have different habitat preferences. Interest-
ingly, Salix richardsonii is spatially segregated from C. 
tetragona on Qikiqtaruk, the former being typically asso-
ciated with other canopy-forming willows, and the latter 
mostly found with other evergreen shrubs and Betula nana 
in the Komakuk vegetation type characterised by soil dis-
turbance from freeze–thaw processes (Smith et al. 1989). 
These habitat preferences likely reflect the different toler-
ance and plasticity of willow species to soil characteristics 
and other environmental and succession-related character-
istics: throughout the Yukon Territory, Salix richardsonii is 
most commonly found on alluvial sites or floodplains, while 
Salix pulchra has a wider range of habitats (Cody 1996). 
The higher environmental plasticity of S. pulchra might 
be partially linked to the apparent absence of vulnerability 
to chemical interference from common ericaceous dwarf 
shrubs, although further studies will be required to test this 
specifically.

Fig. 4  Effect of leaf extracts from Cassiope tetragona and Vaccin-
ium uliginosum on seed germination of three willow species from a 
Qikiqtaruk and b Kluane. Dots represent binomial model estimates 
(error bars are confidence intervals), and letters indicate significant 
differences between treatments, as identified by Tukey’s post hoc test
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The fact that only one out of three willow species seemed 
vulnerable to allelopathy raises the issue of replication in 
this study and the question of the specificity of biotic inter-
actions. Species-specific allelopathic responses have been 
reported at the treeline, with for instance black spruce, but 
not larch, being affected by ericaceous species (Dufour 
Tremblay et al. 2012). However, the scarcity of similar stud-
ies and low sample sizes make it difficult to rule out experi-
mental artefacts and identify general patterns. To validate 
our findings and make them more generally applicable to the 
tundra biome, we call for more tests of allelopathic effects 
with these and other species in the Arctic region.

Biotic filters for shrubline expansion

While shrub encroachment in the tundra biome has received 
considerable attention, shrublines are understudied, with 
only six studies focusing specifically on range shifts 
(reviewed in Myers-Smith and Hik 2017). A study of 14 
elevational shrublines in the Kluane region, one of our field 
sites, consistently found younger willows at higher eleva-
tions, a pattern suggestive of climate-driven range expan-
sion (Myers-Smith and Hik 2017). However, we still have 
a poor understanding of the local factors that may mitigate 
the speed of shrubline advances. Our results and the lack of 
comparable studies highlight the need to better understand 
plant–plant interactions within tundra communities. Stand-
ardised replication of our experiments at more sites and with 
a more diverse range of tundra species could help determine 
whether biotic interactions are likely to be a major constraint 
to shrub expansion above the shrubline.

The biotic interactions investigated in this study, i.e. inter-
action with ground cover and allelopathy, are only a sub-
set of all the possible interactions that may affect seedling 
establishment above the shrubline. Notably, below-ground 
interactions in the tundra are still poorly understood, and 
it is unclear whether some positive associations, like those 
arising from mycorrhizal symbionts and other interactions 
with soil microbiota (Grau et al. 2010; Pellissier et al. 2013; 
Sedlacek et al. 2014), may balance out negative interactions 
like allelopathy. The growth and survival of seedlings could 
be positively or negatively affected by the presence of taller 
plants through nurse effects or competition, respectively: the 
direction and importance of these interactions can even vary 
across life-stages (e.g. seed–seedling conflicts; Cranston and 
Hermanutz, 2013).

Overall, the realised extent of range shifts depends not 
only on climate suitability but also on biotic interactions 
within the new community (HilleRisLambers et al. 2013). 
Therefore, range shifts of Arctic and alpine shrublines will 
almost certainly be slower than predicted by climate enve-
lope models. The species-specific nature of biotic interac-
tions may act as an ecological filter where the advance of 

some species may be limited or prevented by the presence 
of competitors, allelopathic plants, or selective herbivores. 
Thus, it is unlikely that tundra shrubline range shifts will 
occur as intact plant communities moving to higher eleva-
tions or latitudes; instead, filtering will occur, with biotic 
interactions leading to different species assemblages forming 
beyond the current range limit.

Conclusion

Climate change is altering ecosystem boundaries, and 
a growing research focus is to achieve the integration of 
biotic interactions into predictive models of climate-driven 
range shifts. While treelines have received extensive atten-
tion and the effects of a wider range of plant–plant interac-
tions on recruitment are starting to be better understood, it 
is unclear whether those mechanisms have the same impor-
tance at high-elevation and high-latitude shrublines. Our two 
simple experiments showed that the effects of two types of 
plant–plant interactions, namely seedbed type and allelopa-
thy, are also relevant processes partly limiting germination 
at and above Arctic and alpine shrublines. Acknowledging 
the high spatio-temporal variability in seed production and 
viability in northern environments, we call for replication of 
these types of studies to gain a better understanding of the 
constraints acting upon regeneration in the tundra biome.
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