18 research outputs found

    Nanoscale structure of amyloid-β plaques in Alzheimer’s disease

    Get PDF
    Abstract Soluble amyloid-β (Aβ) is considered to be a critical component in the pathogenesis of Alzheimer’s disease (AD). Evidence suggests that these non-fibrillar Aβ assemblies are implicated in synaptic dysfunction, neurodegeneration and cell death. However, characterization of these species comes mainly from studies in cellular or animal models, and there is little data in intact human samples due to the lack of adequate optical microscopic resolution to study these small structures. Here, to achieve super-resolution in all three dimensions, we applied Array Tomography (AT) and Stimulated Emission Depletion microscopy (STED), to characterize in postmortem human brain tissue non-fibrillar Aβ structures in amyloid plaques of cases with autosomal dominant and sporadic AD. Ultrathin sections scanned with super-resolution STED microscopy allowed the detection of small Aβ structures of the order of 100 nm. We reconstructed a whole human amyloid plaque and established that plaques are formed by a dense core of higher order Aβ species (~0.022 µm3) and a peripheral halo of smaller Aβ structures (~0.003 µm3). This work highlights the potential of AT-STED for human neuropathological studies

    The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system

    Get PDF
    In Alzheimer disease (AD), deposition of neurofibrillary tangles and loss of synapses in the neocortex and limbic system each correlate strongly with cognitive impairment. Tangles are composed of misfolded hyperphosphorylated tau proteins; however, the link between tau abnormalities and synaptic dysfunction remains unclear. We examined the location of tau in control and AD cortices using biochemical and morphologic methods. We found that, in addition to its well-described axonal localization, normal tau is present at both presynaptic and postsynaptic terminals in control human brains. In AD, tau becomes hyperphosphorylated and misfolded at both presynaptic and postsynaptic terminals, and this abnormally posttranslationally modified tau is enriched in synaptoneurosomal fractions. Synaptic tau seems to be hyperphosphorylated and ubiquitinated, and forms stable oligomers resistant to SDS denaturation. The accumulation of hyperphosphorylated tau oligomers at human AD synapses is associated with increased ubiquitinated substrates and increased proteasome components, consistent with dysfunction of the ubiquitin-proteasome system. Our findings suggest that synaptic hyperphosphorylated tau oligomers may be an important mediator of the proteotoxicity that disrupts synapses in AD

    Volume Electron Microscopy Study of the Relationship Between Synapses and Astrocytes in the Developing Rat Somatosensory Cortex.

    Get PDF
    In recent years, numerous studies have shown that astrocytes play an important role in neuronal processing of information. One of the most interesting findings is the existence of bidirectional interactions between neurons and astrocytes at synapses, which has given rise to the concept of "tripartite synapses" from a functional point of view. We used focused ion beam milling and scanning electron microscopy (FIB/SEM) to examine in 3D the relationship of synapses with astrocytes that were previously labeled by intracellular injections in the rat somatosensory cortex. We observed that a large number of synapses (32%) had no contact with astrocytic processes. The remaining synapses (68%) were in contact with astrocytic processes, either at the level of the synaptic cleft (44%) or with the pre- and/or post-synaptic elements (24%). Regarding synaptic morphology, larger synapses with more complex shapes were most frequently found within the population that had the synaptic cleft in contact with astrocytic processes. Furthermore, we observed that although synapses were randomly distributed in space, synapses that were free of astrocytic processes tended to form clusters. Overall, at least in the developing rat neocortex, the concept of tripartite synapse only seems to be applicable to a subset of synapses

    Pharmacological Inhibition of BACE1 Impairs Synaptic Plasticity and Cognitive Functions

    No full text
    BACKGROUND: BACE1 (beta site amyloid precursor protein cleaving enzyme 1) is the rate limiting protease in amyloid beta production, hence a promising drug target for the treatment of Alzheimer's disease. Inhibition of BACE1, as the major beta-secretase in vivo with multiple substrates, however is likely to have mechanism-based adverse effects. We explored the impact of long-term pharmacological inhibition of BACE1 on dendritic spine dynamics, synaptic functions, and cognitive performance of adult mice. METHODS: Sandwich enzyme-linked immunosorbent assay was used to assess A beta 40 levels in brain and plasma after oral administration of BACE1 inhibitors SCH1682496 or LY2811376. In vivo two-photon microscopy of the somatosensory cortex was performed to monitor structural dynamics of dendritic spines while synaptic functions and plasticity were measured via electrophysiological recordings of excitatory postsynaptic currents and hippocampal long-term potentiation in brain slices. Finally, behavioral tests were performed to analyze the impact of pharmacological inhibition of BACE1 on cognitive performance. RESULTS: Dose-dependent decrease of A beta 40 levels in vivo confirmed suppression of BACE1 activity by both inhibitors. Prolonged treatment caused a reduction in spine formation of layer V pyramidal neurons, which recovered after withdrawal of inhibitors. Congruently, the rate of spontaneous and miniature excitatory postsynaptic currents in pyramidal neurons and hippocampal long-term potentiation were reduced in animals treated with BACE1 inhibitors. These effects were not detected in Bace1(-/-) mice treated with SCH1682496, confirming BACE1 as the pharmacological target. Described structural and functional changes were associated with cognitive deficits as revealed in behavioral tests. CONCLUSIONS: Our findings indicate important functions to BACE1 in structural and functional synaptic plasticity in the mature brain, with implications for cognition
    corecore