9 research outputs found

    Jamming in Embryogenesis and Cancer Progression

    Get PDF
    The ability of tissues and cells to move and rearrange is central to a broad range of diverse biological processes such as tissue remodeling and rearrangement in embryogenesis, cell migration in wound healing, or cancer progression. These processes are linked to a solidlike to fluid-like transition, also known as unjamming transition, a not rigorously defined framework that describes switching between a stable, resting state and an active, moving state. Various mechanisms, that is, proliferation and motility, are critical drivers for the (un) jamming transition on the cellular scale. However, beyond the scope of these fundamental mechanisms of cells, a unifying understanding remains to be established. During embryogenesis, the proliferation rate of cells is high, and the number density is continuously increasing, which indicates number-density-driven jamming. In contrast, cells have to unjam in tissues that are already densely packed during tumor progression, pointing toward a shape-driven unjamming transition. Here, we review recent investigations of jamming transitions during embryogenesis and cancer progression and pursue the question of how they might be interlinked. We discuss the role of density and shape during the jamming transition and the different biological factors driving it

    Differences in cortical contractile properties between healthy epithelial and cancerous mesenchymal breast cells

    Get PDF
    Cell contractility is mainly imagined as a force dipole-like interaction based on actin stress fibers that pull on cellular adhesion sites. Here, we present a different type of contractility based on isotropic contractions within the actomyosin cortex. Measuring mechanosensitive cortical contractility of suspended cells among various cell lines allowed us to exclude effects caused by stress fibers. We found that epithelial cells display a higher cortical tension than mesenchymal cells, directly contrasting to stress fiber-mediated contractility. These two types of contractility can even be used to distinguish epithelial from mesenchymal cells. These findings from a single cell level correlate to the rearrangement effects of actomyosin cortices within cells assembled in multicellular aggregates. Epithelial cells form a collective contractile actin cortex surrounding multicellular aggregates and further generate a high surface tension reminiscent of tissue boundaries. Hence, we suggest this intercellular structure as to be crucial for epithelial tissue integrity. In contrast, mesenchymal cells do not form collective actomyosin cortices reducing multicellular cohesion and enabling cell escape from the aggregates

    Jamming in Embryogenesis and Cancer Progression

    No full text
    The ability of tissues and cells to move and rearrange is central to a broad range of diverse biological processes such as tissue remodeling and rearrangement in embryogenesis, cell migration in wound healing, or cancer progression. These processes are linked to a solidlike to fluid-like transition, also known as unjamming transition, a not rigorously defined framework that describes switching between a stable, resting state and an active, moving state. Various mechanisms, that is, proliferation and motility, are critical drivers for the (un) jamming transition on the cellular scale. However, beyond the scope of these fundamental mechanisms of cells, a unifying understanding remains to be established. During embryogenesis, the proliferation rate of cells is high, and the number density is continuously increasing, which indicates number-density-driven jamming. In contrast, cells have to unjam in tissues that are already densely packed during tumor progression, pointing toward a shape-driven unjamming transition. Here, we review recent investigations of jamming transitions during embryogenesis and cancer progression and pursue the question of how they might be interlinked. We discuss the role of density and shape during the jamming transition and the different biological factors driving it

    Jamming in Embryogenesis and Cancer Progression

    No full text
    The ability of tissues and cells to move and rearrange is central to a broad range of diverse biological processes such as tissue remodeling and rearrangement in embryogenesis, cell migration in wound healing, or cancer progression. These processes are linked to a solidlike to fluid-like transition, also known as unjamming transition, a not rigorously defined framework that describes switching between a stable, resting state and an active, moving state. Various mechanisms, that is, proliferation and motility, are critical drivers for the (un) jamming transition on the cellular scale. However, beyond the scope of these fundamental mechanisms of cells, a unifying understanding remains to be established. During embryogenesis, the proliferation rate of cells is high, and the number density is continuously increasing, which indicates number-density-driven jamming. In contrast, cells have to unjam in tissues that are already densely packed during tumor progression, pointing toward a shape-driven unjamming transition. Here, we review recent investigations of jamming transitions during embryogenesis and cancer progression and pursue the question of how they might be interlinked. We discuss the role of density and shape during the jamming transition and the different biological factors driving it

    Differences in cortical contractile properties between healthy epithelial and cancerous mesenchymal breast cells

    No full text
    Cell contractility is mainly imagined as a force dipole-like interaction based on actin stress fibers that pull on cellular adhesion sites. Here, we present a different type of contractility based on isotropic contractions within the actomyosin cortex. Measuring mechanosensitive cortical contractility of suspended cells among various cell lines allowed us to exclude effects caused by stress fibers. We found that epithelial cells display a higher cortical tension than mesenchymal cells, directly contrasting to stress fiber-mediated contractility. These two types of contractility can even be used to distinguish epithelial from mesenchymal cells. These findings from a single cell level correlate to the rearrangement effects of actomyosin cortices within cells assembled in multicellular aggregates. Epithelial cells form a collective contractile actin cortex surrounding multicellular aggregates and further generate a high surface tension reminiscent of tissue boundaries. Hence, we suggest this intercellular structure as to be crucial for epithelial tissue integrity. In contrast, mesenchymal cells do not form collective actomyosin cortices reducing multicellular cohesion and enabling cell escape from the aggregates

    Differences in cortical contractile properties between healthy epithelial and cancerous mesenchymal breast cells

    No full text
    Cell contractility is mainly imagined as a force dipole-like interaction based on actin stress fibers that pull on cellular adhesion sites. Here, we present a different type of contractility based on isotropic contractions within the actomyosin cortex. Measuring mechanosensitive cortical contractility of suspended cells among various cell lines allowed us to exclude effects caused by stress fibers. We found that epithelial cells display a higher cortical tension than mesenchymal cells, directly contrasting to stress fiber-mediated contractility. These two types of contractility can even be used to distinguish epithelial from mesenchymal cells. These findings from a single cell level correlate to the rearrangement effects of actomyosin cortices within cells assembled in multicellular aggregates. Epithelial cells form a collective contractile actin cortex surrounding multicellular aggregates and further generate a high surface tension reminiscent of tissue boundaries. Hence, we suggest this intercellular structure as to be crucial for epithelial tissue integrity. In contrast, mesenchymal cells do not form collective actomyosin cortices reducing multicellular cohesion and enabling cell escape from the aggregates

    Trichoderma/pathogen/plant interaction in pre-harvest food security

    No full text
    corecore