50 research outputs found

    Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data

    Get PDF
    Quantification of surface water storage in extensive floodplains and their dynamics are crucial for a better understanding of global hydrological and biogeochemical cycles. In this study, we present estimates of both surface water extent and storage combining multi-mission remotely sensed observations and their temporal evolution over more than 15 years in the Mackenzie Delta. The Mackenzie Delta is located in the northwest of Canada and is the second largest delta in the Arctic Ocean. The delta is frozen from October to May and the recurrent ice break-up provokes an increase in the river's flows. Thus, this phenomenon causes intensive floods along the delta every year, with dramatic environmental impacts. In this study, the dynamics of surface water extent and volume are analysed from 2000 to 2015 by combining multi-satellite information from MODIS multispectral images at 500 m spatial resolution and river stages derived from ERS-2 (1995–2003), ENVISAT (2002–2010) and SARAL (since 2013) altimetry data. The surface water extent (permanent water and flooded area) peaked in June with an area of 9600 km2 (±200 km2) on average, representing approximately 70 % of the delta's total surface.\ud Altimetry-based water levels exhibit annual amplitudes ranging from 4 m in the downstream part to more than 10 m in the upstream part of the Mackenzie Delta. A high overall correlation between the satellite-derived and in situ water heights (R > 0.84) is found for the three altimetry missions. Finally, using altimetry-based water levels and MODIS-derived surface water extents, maps of interpolated water heights over the surface water extents are produced. Results indicate a high variability of the water height magnitude that can reach 10 m compared to the lowest water height in the upstream part of the delta during the flood peak in June. Furthermore, the total surface water volume is estimated and shows an annual variation of approximately 8.5 km3 during the whole study period, with a maximum of 14.4 km3 observed in 2006. The good agreement between the total surface water volume retrievals and in situ river discharges (R =  0.66) allows for validation of this innovative multi-mission approach and highlights the high potential to study the surface water extent dynamics

    Assessment of nocturnal aerosol optical depth from lunar photometry at the Izaña high mountain observatory

    Get PDF
    This work involves a first analysis of the systematic errors observed in the AOD retrieved at nighttime using the Sun–sky–lunar CE318-T photometer. In this respect, this paper is a first attempt to correct the AOD uncertainties that currently affect the lunar photometry by means of an empirical regression model. We have detected and corrected an important bias correlated to the Moon's phase and zenith angles, especially at longer wavelength channels.AERONET Sun photometers at Izaña have been calibrated within the AERONET Europe TNA, supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 654109 (ACTRIS-2)

    Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China

    Get PDF
    Aerosol pollution in eastern China is an unfortunate consequence of the region's rapid economic and industrial growth. Here, sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify the aerosols based on size and absorption. Bimodal size distributions were found throughout the year, but larger volumes and effective radii of fine-mode particles occurred in June and September due to hygroscopic growth and/or cloud processing. Increases in the fine-mode particles in June and September caused AOD440 nm > 1.00 at most sites, and annual mean AOD440 nm values of 0.71-0.76 were found at the urban sites and 0.68 at the rural site. Unlike northern China, the AOD440 nm was lower in July and August (∌ 0.40-0.60) than in January and February (0.71-0.89) due to particle dispersion associated with subtropical anticyclones in summer. Low volumes and large bandwidths of both fine-mode and coarse-mode aerosol size distributions occurred in July and August because of biomass burning. Single-scattering albedos at 440 nm (SSA440 nm) from 0.91 to 0.94 indicated particles with relatively strong to moderate absorption. Strongly absorbing particles from biomass burning with a significant SSA wavelength dependence were found in July and August at most sites, while coarse particles in March to May were mineral dust. Absorbing aerosols were distributed more or less homogeneously throughout the region with absorption aerosol optical depths at 440 nm ∌ 0.04-0.06, but inter-site differences in the absorption Angström exponent indicate a degree of spatial heterogeneity in particle composition. The annual mean DARF was −93 ± 44 to −79 ± 39 W m−2 at the Earth's surface and ∌ −40 W m−2 at the top of the atmosphere (for the solar zenith angle range of 50 to 80∘) under cloud-free conditions. The fine mode composed a major contribution of the absorbing particles in the classification scheme based on SSA, fine-mode fraction and extinction Angström exponent. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing algorithms

    Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign

    Get PDF
    The first multi-instrument nocturnal aerosol optical depth (AOD) intercomparison campaign was held at the high-mountain Izaña Observatory (Tenerife, Spain) in June 2017, involving 2-min synchronous measurements from two different types of lunar photometers (Cimel CE318-T and Moon Precision Filter Radiometer, LunarPFR) and one stellar photometer. The Robotic Lunar Observatory (ROLO) model developed by the U.S. Geological Survey (USGS) was compared with the open-access ROLO Implementation for Moon photometry Observation (RIMO) model. Results showed rather small differences at Izaña over a 2-month time period covering June and July, 2017 (±0.01 in terms of AOD calculated by means of a day/night/day coherence test analysis and ± 2% in terms of lunar irradiance). The RIMO model has been used in this field campaign to retrieve AOD from lunar photometric measurements. No evidence of significant differences with the Moon's phase angle was found when comparing raw signals of the six Cimel photometers involved in this field campaign. The raw signal comparison of the participating lunar photometers (Cimel and LunarPFR) performed at coincident wavelengths showed consistent measurements and AOD differences within their combined uncertainties at 870 nm and 675 nm. Slightly larger AOD deviations were observed at 500 nm, pointing to some unexpected instrumental variations during the measurement period. Lunar irradiances retrieved using RIMO for phase angles varying between 0° and 75° (full Moon to near quarter Moon) were compared to the irradiance variations retrieved by Cimel and LunarPFR photometers. Our results showed a relative agreement within ± 3.5% between the RIMO model and the photometer-based lunar irradiances. The AOD retrieved by performing a Langley-plot calibration each night showed a remarkable agreement (better than 0.01) between the lunar photometers. However, when applying the Lunar-Langley calibration using RIMO, AOD differences of up to 0.015 (0.040 for 500 nm) were found, with differences increasing with the Moon's phase angle. These differences are thought to be partly due to the uncertainties in the irradiance models, as well as instrumental deficiencies yet to be fully understood. High AOD variability in stellar measurements was detected during the campaign. Nevertheless, the observed AOD differences in the Cimel/stellar comparison were within the expected combined uncertainties of these two photometric techniques. Our results indicate that lunar photometry is a more reliable technique, especially for low aerosol loading conditions. The uncertainty analysis performed in this paper shows that the combined standard AOD uncertainty in lunar photometry is dependent on the calibration technique (up to 0.014 for Langley-plot with illumination-based correction, 0.012–0.022 for Lunar-Langley calibration, and up to 0.1 for the Sun-Moon Gain Factor method). This analysis also corroborates that the uncertainty of the lunar irradiance model used for AOD calculation is within the 5–10% expected range. This campaign has allowed us to quantify the important technical difficulties that still exist when routinely monitoring aerosol optical properties at night-time. The small AOD differences observed between the three types of photometers involved in the campaign are only detectable under pristine sky conditions such as those found in this field campaign. Longer campaigns are necessary to understand the observed discrepancies between instruments as well as to provide more conclusive results about the uncertainty involved in the lunar irradiance models.This work has been developed within the framework of the activities of the World Meteorological Organization (WMO) Commission for Instruments and Methods of Observations (CIMO) Izaña Testbed for Aerosols and Water Vapour Remote Sensing Instruments. AERONET sun photometers at Izaña have been calibrated within the AERONET Europe TNA, supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 654109 (ACTRIS‒2). CE318-T linearity check has been performed as part of the ESA-funded project “Lunar spectral irradiance measurement and modelling for absolute calibration of EO optical sensors” under ESA contract number: 4000121576/17/NL/AF/hh. LunarPFR has been performing measurements since 2014 in Norway thanks to Svalbard Science Forum funded project, 2014–2016. The authors would like to thank AERONET team for their support and also to NASA’s Navigation and Ancillary Information Facility (NAIF) at the Jet Propulsion Laboratory to help the implementation of the “SPICE” ancillary information system used in this study. We also thank Izaña's ITs for their work to implement the RIMO model in the free-access server. Special thanks should be given to Tom Stone, who has kindly provided us with the USGS/ROLO irradiance values used in the model comparison analysis. This work has also received funding from the European Union’s Horizon 2020 research and innovation programme and from Marie SkƂodowska-Curie Individual Fellowships (IF) ACE-GFAT (grant agreement no. 659398). The authors are grateful to Spanish MINECO (CTM2015-66742-R) and Junta de Castilla y LeĂłn (VA100P17)

    Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign

    Get PDF
    The first multi-instrument nocturnal aerosol optical depth (AOD) intercom-parison campaign was held at the high-mountain Iza ̃na Observatory (Tener-ife, Spain) in June 2017, involving 2-minutes synchronous measurements fromtwo different types of lunar photometers (Cimel CE318-T and Moon Preci-sion Filter Radiometer, LunarPFR) and one stellar photometer. The Robotic Lunar Observatory (ROLO) model developed by the U.S. Geological Survey(USGS) was compared with the open-access ROLO Implementation for Moonphotometry Observation (RIMO) model. Results showed rather small differ-ences at Iza ̃na over a 2-month time period covering June and July, 2017(±0.01 in terms of AOD calculated by means of a day/night/day coherencetest analysis and±2 % in terms of lunar irradiance). The RIMO model hasbeen used in this field campaign to retrieve AOD from lunar photometricmeasurements. No evidence of significant differences with the Moon’s phase angle wasfound when comparing raw signals of the six Cimel photometers involved inthis field campaign.The raw signal comparison of the participating lunar photometers (Cimeland LunarPFR) performed at coincident wavelengths showed consistent mea-surements and AOD differences within their combined uncertainties at 870 nmand 675 nm. Slightly larger AOD deviations were observed at 500 nm, point-ing to some unexpected instrumental variations during the measurement pe-riod.Lunar irradiances retrieved using RIMO for phase angles varying between0◩and 75◩(full Moon to near quarter Moon) were compared to the irradi-ance variations retrieved by Cimel and LunarPFR photometers. Our resultsshowed a relative agreement within±3.5 % between the RIMO model andthe photometer-based lunar irradiances.The AOD retrieved by performing a Langley-plot calibration each nightshowed a remarkable agreement (better than 0.01) between the lunar pho-tometers. However, when applying the Lunar-Langley calibration using RIMO,AOD differences of up to 0.015 (0.040 for 500 nm) were found, with differ-ences increasing with the Moon’s phase angle. These differences are thoughtto be partly due to the uncertainties in the irradiance models, as well asinstrumental deficiencies yet to be fully understood.High AOD variability in stellar measurements was detected during thecampaign. Nevertheless, the observed AOD differences in the Cimel/stellarcomparison were within the expected combined uncertainties of these twophotometric techniques. Our results indicate that lunar photometry is amore reliable technique, especially for low aerosol loading conditions.The uncertainty analysis performed in this paper shows that the com-bined standard AOD uncertainty in lunar photometry is dependent on thecalibration technique (up to 0.014 for Langley-plot with illumination-basedcorrection, 0.012-0.022 for Lunar-Langley calibration, and up to 0.1 for the 2 Sun-Moon Gain Factor method). This analysis also corroborates that theuncertainty of the lunar irradiance model used for AOD calculation is withinthe 5-10 % expected range.This campaign has allowed us to quantify the important technical diffi-culties that still exist when routinely monitoring aerosol optical propertiesat night-time. The small AOD differences observed between the three typesof photometers involved in the campaign are only detectable under pristinesky conditions such as those found in this field campaign. Longer campaignsare necessary to understand the observed discrepancies between instrumentsas well as to provide more conclusive results about the uncertainty involvedin the lunar irradiance model

    Assessment of nocturnal aerosol optical depth from lunar photometry at the Izaña high mountain observatory

    Get PDF
    This work is a first approach to correct the systematic errors observed in the aerosol optical depth (AOD) retrieved at nighttime using lunar photometry and calibration techniques dependent on the lunar irradiance model. To this end, nocturnal AOD measurements were performed in 2014 using the CE318-T master Sun–sky–lunar photometer (lunar Langley calibrated) at the Izaña high mountain observatory. This information has been restricted to 59 nights characterized as clean and stable according to lidar vertical profiles. A phase angle dependence as well as an asymmetry within the Moon's cycle of the Robotic Lunar Observatory (ROLO) model could be deduced from the comparison in this 59-night period of the CE318-T calibration performed by means of the lunar Langley calibration and the calibration performed every single night by means of the common Langley technique. Nocturnal AOD has also been compared in the same period with a reference AOD based on daylight AOD extracted from the AErosol RObotic NETwork (AERONET) at the same station. Considering stable conditions, the difference ΔAODfit, between AOD from lunar observations and the linearly interpolated AOD (the reference) from daylight data, has been calculated. The results show that ΔAODfit values are strongly affected by the Moon phase and zenith angles. This dependency has been parameterized using an empirical model with two independent variables (Moon phase and zenith angles) in order to correct the AOD for these residual dependencies. The correction of this parameterized dependency has been checked at four stations with quite different environmental conditions (Izaña, Lille, Carpentras and Dakar) showing a significant reduction of the AOD dependence on phase and zenith angles and an improved agreement with daylight reference data. After the correction, absolute AOD differences for day–night–day clean and stable transitions remain below 0.01 for all wavelengths

    Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    Get PDF
    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental setup also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote-sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modeling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to producing high levels of atmospheric pollutants or intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign, with the main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 and 0.6 (at 440 nm) over the western and central Mediterranean basins. One important point of this experiment concerns the direct observations of aerosol extinction onboard the ATR-42, using the CAPS system, showing local maxima reaching up to 150Mm(-1) within the dust plume. Non-negligible aerosol extinction (about 50Mm(-1)) has also been observed within the marine boundary layer (MBL). By combining the ATR- 42 extinction coefficient observations with absorption and scattering measurements, we performed a complete optical closure revealing excellent agreement with estimated optical properties. This additional information on extinction properties has allowed calculation of the dust single scattering albedo (SSA) with a high level of confidence over the western Mediterranean. Our results show a moderate variability from 0.90 to 1.00 (at 530 nm) for all flights studied compared to that reported in the literature on this optical parameter. Our results underline also a relatively low difference in SSA with values derived near dust sources. In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea spray and pollution located within the MBL, and mineral dust and/or aged North American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations allow one to investigate the vertical structure of the aerosol size distribution showing particles characterized by a large size (> 10 ÎŒm in diameter) within dust plumes. In most of cases, a coarse mode characterized by an effective diameter ranging between 5 and 10 ÎŒm, has been detected above the MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to (-90)Wm(-2) at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5 K per day in the solar spectrum (for a solar angle of 30 ) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20Wm(-2) (for the whole period) over the Mediterranean Sea together with maxima (-50Wm(-2)) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multiyear simulation, performed for the 2003 to 2009 period and including an ocean–atmosphere (O–A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O–A fluxes and the hydrological cycle over the Mediterranean.French National Research Agency (ANR) ANR-11-BS56-0006ADEMEFrench Atomic Energy CommissionCNRS-INSU and Meteo-France through the multidisciplinary programme MISTRALS (Mediterranean Integrated Studies aT Regional And Local Scales)CORSiCA project - Collectivite Territoriale de Corse through Fonds Europeen de Developpement Regional of the European Operational ProgramContrat de Plan Etat-RegionEuropean Union's Horizon 2020 research and innovation program 654169Spanish Ministry of Economy and Competitivity TEC2012-34575Science and Innovation UNPC10-4E-442European Union (EU)Department of Economy and Knowledge of the Catalan Autonomous Government SGR 583Andalusian Regional Government P12-RNM-2409Spanish Government CGL2013-45410-R 26225

    Enhancing mobile aerosol monitoring with CE376 dual-wavelength depolarization lidar

    Get PDF
    We present the capabilities of a compact dual-wavelength depolarization lidar to assess the spatiotemporal variations in aerosol properties aboard moving vectors. Our approach involves coupling the lightweight Cimel CE376 lidar, which provides measurements at 532 and 808 nm and depolarization at 532 nm, with a photometer to monitor aerosol properties. The assessments, both algorithmic and instrumental, were conducted at ATOLL (ATmospheric Observatory of LiLle) platform operated by the Laboratoire d'Optique AtmosphĂ©rique (LOA), in Lille, France. An early version of the CE376 lidar co-located with the CE318-T photometer and with a multi-wavelength Raman lidar were considered for comparisons and validation. We developed a modified Klett inversion method for simultaneous two-wavelength elastic lidar and photometer measurements. Using this setup, we characterized aerosols during two distinct events of Saharan dust and dust smoke aerosols transported over Lille in spring 2021 and summer 2022. For validation purposes, comparisons against the Raman lidar were performed, demonstrating good agreement in aerosol properties with relative differences of up to 12 % in the depolarization measurements. Moreover, a first dataset of CE376 lidar and photometer performing on-road measurements was obtained during the FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality) field campaign deployed in summer 2019 over the northwestern USA. By lidar and photometer mapping in 3D, we investigated the transport of released smoke from active fire spots at William Flats (northeast WA, USA). Despite extreme environmental conditions, our study enabled the investigation of aerosol optical properties near the fire source, distinguishing the influence of diffuse, convective, and residual smoke. Backscatter, extinction profiles, and column-integrated lidar ratios at 532 and 808 nm were derived for a quality-assured dataset. Additionally, the extinction Ångström exponent (EAE), color ratio (CR), attenuated color ratio (ACR), and particle linear depolarization ratio (PLDR) were derived. In this study, we discuss the capabilities (and limitations) of the CE376 lidar in bridging observational gaps in aerosol monitoring, providing valuable insights for future research in this field.</p

    Assessment of Sun photometer Langley calibration at the high-elevation sites Mauna Loa and Izaña

    Get PDF
    The aim of this paper is to analyze the suitability of the high-mountain stations Mauna Loa and Izaña for Langley plot calibration of Sun photometers. Thus the aerosol optical depth (AOD) characteristics and seasonality, as well as the cloudiness, have been investigated in order to provide a robust estimation of the calibration uncertainty as well as the number of days that are suitable for Langley calibrations. The data used for the investigations belong to the AERONET and GAW-PFR networks, which maintain reference Sun photometers at these stations with long measurement records: 22 years at Mauna Loa and 15 years at Izaña. In terms of clear-sky and stable aerosol conditions, Mauna Loa (3397&thinsp;m&thinsp;a.s.l.) exhibits on average 377 Langley plots (243 morning and 134 afternoon) per year suitable for Langley plot calibration, whereas Izaña (2373&thinsp;m&thinsp;a.s.l.) shows 343 Langley plots (187 morning and 155 afternoon) per year. The background AOD (500&thinsp;nm) values, on days that are favorable for Langley calibrations, are in the range 0.01–0.02 throughout the year, with well-defined seasonality that exhibits a spring maximum at both stations plus a slight summer increase at Izaña. The statistical analysis of the long-term determination of extraterrestrial signals yields to a calibration uncertainty of  ∌ &thinsp;0.25–0.5&thinsp;%, this uncertainty being smaller in the visible and near-infrared wavelengths and larger in the ultraviolet wavelengths. This is due to atmospheric variability produced by changes in several factors, mainly the AOD. The uncertainty cannot be reduced based only on quality criteria of individual Langley plots and averaging over several days is shown to reduce the uncertainty to the needed levels for reference Sun photometers.</p

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    corecore