46 research outputs found

    Byrd ice core debris constrains the sediment provenance signature of central West Antarctica

    Get PDF
    Provenance records from sediments deposited offshore of the West Antarctic Ice Sheet (WAIS) can help identify past major ice retreat, thus constraining ice-sheet models projecting future sea-level rise. Interpretations from such records are, however, hampered by the ice obscuring Antarctica's geology. Here, we explore central West Antarctica's subglacial geology using basal debris from within the Byrd ice core, drilled to the bed in 1968. Sand grain microtextures and a high kaolinite content (∼38–42%) reveal the debris consists predominantly of eroded sedimentary detritus, likely deposited initially in a warm, pre-Oligocene, subaerial environment. Detrital hornblende 40Ar/39Ar ages suggest proximal late Cenozoic subglacial volcanism. The debris has a distinct provenance signature, with: common Permian-Early Jurassic mineral grains; absent early Ross Orogeny grains; a high kaolinite content; and high 143Nd/144Nd and low 87Sr/86Sr ratios. Detecting this “fingerprint” in Antarctic sedimentary records could imply major WAIS retreat, revealing the WAIS's sensitivity to future warming

    Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy

    Get PDF
    The accumulation of insoluble proteins is a pathological hallmark of several neurodegenerative disorders. Tauopathies are caused by the dysfunction and aggregation of tau protein and an impairment of cellular protein degradation pathways may contribute to their pathogenesis. Thus, a deficiency in autophagy can cause neurodegeneration, while activation of autophagy is protective against some proteinopathies. Little is known about the role of autophagy in animal models of human tauopathy. In the present report, we assessed the effects of autophagy stimulation by trehalose in a transgenic mouse model of tauopathy, the human mutant P301S tau mouse, using biochemical and immunohistochemical analyses. Neuronal survival was evaluated by stereology. Autophagy was activated in the brain, where the number of neurons containing tau inclusions was significantly reduced, as was the amount of insoluble tau protein. This reduction in tau aggregates was associated with improved neuronal survival in the cerebral cortex and the brainstem. We also observed a decrease of p62 protein, suggesting that it may contribute to the removal of tau inclusions. Trehalose failed to activate autophagy in the spinal cord, where it had no impact on the level of sarkosyl-insoluble tau. Accordingly, trehalose had no effect on the motor impairment of human mutant P301S tau transgenic mice. Our findings provide direct evidence in favour of the degradation of tau aggregates by autophagy. Activation of autophagy may be worth investigating in the context of therapies for human tauopathies

    Implicating Calpain in Tau-Mediated Toxicity In Vivo

    Get PDF
    Alzheimer's disease and other related neurodegenerative disorders known as tauopathies are characterized by the accumulation of abnormally phosphorylated and aggregated forms of the microtubule-associated protein tau. Several laboratories have identified a 17 kD proteolytic fragment of tau in degenerating neurons and in numerous cell culture models that is generated by calpain cleavage and speculated to contribute to tau toxicity. In the current study, we employed a Drosophila tauopathy model to investigate the importance of calpain-mediated tau proteolysis in contributing to tau neurotoxicity in an animal model of human neurodegenerative disease. We found that mutations that disrupted endogenous calpainA or calpainB activity in transgenic flies suppressed tau toxicity. Expression of a calpain-resistant form of tau in Drosophila revealed that mutating the putative calpain cleavage sites that produce the 17 kD fragment was sufficient to abrogate tau toxicity in vivo. Furthermore, we found significant toxicity in the fly retina associated with expression of only the 17 kD tau fragment. Collectively, our data implicate calpain-mediated proteolysis of tau as an important pathway mediating tau neurotoxicity in vivo

    Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease

    Get PDF
    Common neurodegenerative proteinopathies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system

    First attempts for vitrification of immature oocytes in donkey (Equus asinus): Comparison of two vitrification methods

    Full text link
    Most wild donkey breeds are severely threatened by poaching for meat, habitat loss, and competition with livestock for food resources. Moreover, due to the mechanization in agriculture and in transport, most domestic donkey breeds are at risk of extinction. Considering the importance of biodiversity and preservation of genetic resources, the creation of genetic banks for endangered donkey breeds is urgently needed. Cryopreservation of immature jennies oocytes would be an efficient tool to allow storage of female genetics. The aim of the present study was to establish conditions for immature donkey oocyte vitrification, using equine oocytes as a control. Asine and equine immature cumulus-oocyte complexes were collected by transvaginal ultrasound-guided follicular aspiration and flushed to obtain oocytes surrounded by only corona radiata. Oocytes were vitrified after exposure to increasing concentrations of dimethyl sulfoxide, ethylene glycol and sucrose as cryoprotectants in a solution of INRA-Freeze™ medium or TCM199-Hepes supplemented with bovine serum albumin. Oocytes were warmed in decreasing concentrations of sucrose and processed for in vitro maturation. The recovery rate was 48% for jennies oocytes (4.8 oocyte per female) and 42% for mares oocytes (3.5 oocyte per female). When oocytes were exposed to cryoprotectants in INRA-Freeze™ medium none of the jennies re-warmed oocytes matured, whereas 24% of the mares re-warmed oocytes reached metaphase II after in vitro maturation. When oocytes were exposed to cryoprotectants in TCM199-Hepes-BSA medium, 33% of the jennies re-warmed oocytes matured. In conclusion, we developed a method for the vitrification of immature oocytes from jennies that allows in vitro maturation of the vitrified-warmed asine oocytes. Their competence for fertilization and development has to be ascertain. © 2018 Elsevier Inc

    Are marl-limestone alternations mainly driven by CaCO<SUB>3</SUB> variations at the astronomical timescale? New insights from extraterrestrial <SUP>3</SUP>He

    No full text
    International audienceMarl-limestone alternations are rhythmical inter-bedded deposits that commonly occur in many sedimentological environments. It is quite well established that these lithological variations originate from astronomically-driven climatic variations paced by the Milankovitch cycles of main periods 19, 23, 41, 100 and 405 ka. However, the sedimentological mechanisms involved are not clear: some models attribute these alternations to cyclic changes in the carbonate flux, while terrigenous siliciclastic input remained relatively constant. On the opposite, other models suggest that the carbonate flux was constant while the siliciclastic flux changed cyclically, or that both fluxes varied in antiphase. To test these different scenarios, we collected marlstone and limestone samples from two sedimentary marl-limestone successions from the Middle Jurassic (Bajocian, 3 marl-limestone couplets over 3.4 m) and the Lower Cretaceous (Valanginian, 1 marl-limestone couplet over 0.9 m) of the Southern French Alps (Barles). We measured their concentrations in calcium carbonate, organic carbon, nannofossil, as well as in extraterrestrial 3He (3HeET). Carbonate contents range from 45% in marls to 86% in limestones. Importantly, the measured 3HeET concentrations of all samples remained nearly constant in the siliciclastic fractions, within uncertainties (3 net fluxes, leading to variable dilution of the terrigenous input. Nannofossil counting shows that pelagic CaCO3 fluxes of coccolithophores are inversely correlated to the total carbonate content along the marl-limestone alternations and represent less than 7% of the total carbonate content. Hence, in this setting, these marl-limestone alternations were driven by fluctuations in micritic CaCO3 supply and/or preservation from the nearby carbonate platform that variably diluted nannofossil and organic carbon particles. Finally, assuming a constant 3HeET flux of 100 pcc.cm-2.Ma-1, total 3HeET-derived sedimentation rates range from 20 to 30 m/Ma in the marl strata, while they reach up to 80 to 100 m/Ma in the limestone layers. These sedimentation rates are broadly compatible with local average rates estimated for the whole Bajocian and Valanginian stages by bio-cyclostratigraphy
    corecore