184 research outputs found

    The Tully-Fisher Relation and Its Residuals for a Broadly Selected Sample of Galaxies

    Get PDF
    We measure the relation between galaxy luminosity and disk circular velocity (the Tully-Fisher [TF] relation), in the g, r, i, and z-bands, for a broadly selected sample of galaxies from the Sloan Digital Sky Survey, with the goal of providing well defined observational constraints for theoretical models of galaxy formation. The input sample of 234 galaxies has a roughly flat distribution of absolute magnitudes in the range -18.5 > Mr > -22, and our only morphological selection is an axis-ratio cut b/a < 0.6 to allow accurate inclination corrections. Long-slit spectroscopy yields usable H-alpha rotation curves for 162 galaxies. Observational errors, including distance errors due to peculiar velocities, are small compared to the intrinsic scatter of the TF relation. The slope of the forward TF relation steepens from -5.5 +/- 0.2 mag/log(km/s) in the g-band to -6.6 +/- 0.2 mag/log(km/s) in the z-band. The intrinsic scatter is approximately 0.4 mag in all bands. The scatter is not dominated by rare outliers or by any particular class of galaxies, though it drops slightly, to 0.36 mag, if we restrict the sample to nearly bulgeless systems. Correlations of TF residuals with other galaxy properties are weak: bluer galaxies are significantly brighter than average in the g-band but only marginally brighter in the i-band; more concentrated galaxies are slightly fainter than average; and the TF residual is virtually independent of half-light radius, contrary to the trend expected for gravitationally dominant disks. The observed residual correlations do not account for most of the intrinsic scatter, implying that this scatter is instead driven largely by variations in the ratio of dark to luminous matter within the disk galaxy population.Comment: 23 figures, accepted by AJ, includes cosmological corrections to the dat

    The Swift BAT Perspective on Non-thermal Emission in HIFLUGCS Galaxy Clusters

    Full text link
    The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. In this work, we investigate 14-195 keV spectra from the Swift Burst Alert Telescope (BAT) all-sky survey for evidence of non-thermal excess emission above the exponentially decreasing tail of thermal emission in the flux-limited HIFLUGCS sample. To account for the thermal contribution at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both thermal and non-thermal spectral components can be determined simultaneously. We find marginally significant IC components in six clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single-temperature fits to the XMM-Newton data alone, we see no significant excess emission above that predicted by the thermal model determined at soft energies. This result also holds for the summed spectra of various subgroups, except for the subsample of clusters with diffuse radio emission. For clusters hosting a diffuse radio halo, a relic, or a mini-halo, non-thermal emission is initially detected at the \sim5-sigma confidence level - driven by clusters with mini-halos - but modeling and systematic uncertainties ultimately degrade this significance. In individual clusters, the non-thermal pressure of relativistic electrons is limited to \sim10% of the thermal electron pressure, with stricter limits for the more massive clusters, indicating that these electrons are likely not dynamically important in the central regions of clusters.Comment: 25 pages, 15 figures; some figure and table numbering differs from published ApJ version: please see that for superior formattin

    Identifying High Metallicity M Giants at Intragroup Distances with SDSS

    Get PDF
    Tidal stripping and three-body interactions with the central supermassive black hole may eject stars from the Milky Way. These stars would comprise a set of `intragroup' stars that trace the past history of interactions in our galactic neighborhood. Using the Sloan Digital Sky Survey DR7, we identify candidate solar metallicity red giant intragroup stars using color cuts that are designed to exclude nearby M and L dwarfs. We present 677 intragroup candidates that are selected between 300 kpc and 2 Mpc, and are either the reddest intragroup candidates (M7-M10) or are L dwarfs at larger distances than previously detected.Comment: 8 pages, 6 figures, 1 table (for full version, see http://astro.phy.vanderbilt.edu/~palladl2), Accepted for publication in A

    A population of luminous accreting black holes with hidden mergers

    Full text link
    Major galaxy mergers are thought to play an important part in fuelling the growth of supermassive black holes. However, observational support for this hypothesis is mixed, with some studies showing a correlation between merging galaxies and luminous quasars and others showing no such association. Recent observations have shown that a black hole is likely to become heavily obscured behind merger-driven gas and dust, even in the early stages of the merger, when the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations further suggest that such obscuration and black-hole accretion peaks in the final merger stage, when the two galactic nuclei are closely separated (less than 3 kiloparsecs). Resolving this final stage requires a combination of high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray observations to detect highly obscured sources. However, large numbers of obscured luminous accreting supermassive black holes have been recently detected nearby (distances below 250 megaparsecs) in X-ray observations. Here we report high-resolution infrared observations of hard-X-ray-selected black holes and the discovery of obscured nuclear mergers, the parent populations of supermassive-black-hole mergers. We find that obscured luminous black holes (bolometric luminosity higher than 2x10^44 ergs per second) show a significant (P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a sample of inactive galaxies with matching stellar masses and star formation rates (1.1 per cent), in agreement with theoretical predictions. Using hydrodynamic simulations, we confirm that the excess of nuclear mergers is indeed strongest for gas-rich major-merger hosts of obscured luminous black holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the authors' version of the wor

    Evolution in the Disks and Bulges of Group Galaxies since z=0.4

    Full text link
    We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disk population. At both redshifts, the disks of group galaxies have similar scaling relations and show similar median asymmetries as the disks of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z=0.4 and z=0 using the semi-analytic galaxy catalogues of Bower et al (2006). This model accurately reproduces the B/T distributions of the group and field at z=0.1. However, the model does not reproduce our finding that the deficit of disks in groups has increased significantly since z=0.4.Comment: Accepted for publication in MNRAS. 20 pages, 17 figure

    Stakeholder Theory and Marketing: Moving from a Firm-Centric to a Societal Perspective

    Get PDF
    This essay is inspired by the ideas and research examined in the special section on “Stakeholder Marketing” of the Journal of Public Policy & Marketing in 2010. The authors argue that stakeholder marketing is slowly coalescing with the broader thinking that has occurred in the stakeholder management and ethics literature streams during the past quarter century. However, the predominant view of stakeholders that many marketers advocate is still primarily pragmatic and company centric. The position advanced herein is that stronger forms of stakeholder marketing that reflect more normative, macro/societal, and network-focused orientations are necessary. The authors briefly explain and justify these characteristics in the context of the growing “prosociety” and “proenvironment” perspectives—orientations that are also in keeping with the public policy focus of this journal. Under the “hard form” of stakeholder theory, which the authors endorse, marketing managers must realize that serving stakeholders sometimes requires sacrificing maximum profits to mitigate outcomes that would inflict major damage on other stakeholders, especially society

    Cosmological Constraints from the Clustering of the Sloan Digital Sky Survey DR7 Luminous Red Galaxies

    Get PDF
    We present the power spectrum of the reconstructed halo density field derived from a sample of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey Seventh Data Release (DR7). The halo power spectrum has a direct connection to the underlying dark matter power for k <= 0.2 h/Mpc, well into the quasi-linear regime. This enables us to use a factor of ~8 more modes in the cosmological analysis than an analysis with kmax = 0.1 h/Mpc, as was adopted in the SDSS team analysis of the DR4 LRG sample (Tegmark et al. 2006). The observed halo power spectrum for 0.02 < k < 0.2 h/Mpc is well-fit by our model: chi^2 = 39.6 for 40 degrees of freedom for the best fit LCDM model. We find \Omega_m h^2 * (n_s/0.96)^0.13 = 0.141^{+0.009}_{-0.012} for a power law primordial power spectrum with spectral index n_s and \Omega_b h^2 = 0.02265 fixed, consistent with CMB measurements. The halo power spectrum also constrains the ratio of the comoving sound horizon at the baryon-drag epoch to an effective distance to z=0.35: r_s/D_V(0.35) = 0.1097^{+0.0039}_{-0.0042}. Combining the halo power spectrum measurement with the WMAP 5 year results, for the flat LCDM model we find \Omega_m = 0.289 +/- 0.019 and H_0 = 69.4 +/- 1.6 km/s/Mpc. Allowing for massive neutrinos in LCDM, we find \sum m_{\nu} < 0.62 eV at the 95% confidence level. If we instead consider the effective number of relativistic species Neff as a free parameter, we find Neff = 4.8^{+1.8}_{-1.7}. Combining also with the Kowalski et al. (2008) supernova sample, we find \Omega_{tot} = 1.011 +/- 0.009 and w = -0.99 +/- 0.11 for an open cosmology with constant dark energy equation of state w.Comment: 26 pages, 19 figures, submitted to MNRAS. The power spectrum and a module to calculate the likelihoods is publicly available at http://lambda.gsfc.nasa.gov/toolbox/lrgdr/ . v2 fixes abstract formatting issu
    corecore