114 research outputs found

    A genetic locus complements resistance to Bordetella pertussis-induced histamine sensitization.

    Get PDF
    Histamine plays pivotal role in normal physiology and dysregulated production of histamine or signaling through histamine receptors (HRH) can promote pathology. Previously, we showed that Bordetella pertussis or pertussis toxin can induce histamine sensitization in laboratory inbred mice and is genetically controlled by Hrh1/HRH1. HRH1 allotypes differ at three amino acid residues with

    Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors

    Get PDF
    BACKGROUND: Surrogate measures for cardiovascular disease events have the potential to increase greatly the efficiency of clinical trials. A leading candidate for such a surrogate is the progression of intima-media thickness (IMT) of the carotid artery; much experience has been gained with this endpoint in trials of HMG-CoA reductase inhibitors (statins). METHODS AND RESULTS: We examine two separate systems of criteria that have been proposed to define surrogate endpoints, based on clinical and statistical arguments. We use published results and a formal meta-analysis to evaluate whether progression of carotid IMT meets these criteria for HMG-CoA reductase inhibitors (statins). IMT meets clinical-based criteria to serve as a surrogate endpoint for cardiovascular events in statin trials, based on relative efficiency, linkage to endpoints, and congruency of effects. Results from a meta-analysis and post-trial follow-up from a single published study suggest that IMT meets established statistical criteria by accounting for intervention effects in regression models. CONCLUSION: Carotid IMT progression meets accepted definitions of a surrogate for cardiovascular disease endpoints in statin trials. This does not, however, establish that it may serve universally as a surrogate marker in trials of other agents

    Using Basic Science to Design a Clinical Trial: Baseline Characteristics of Women Enrolled in the Kronos Early Estrogen Prevention Study (KEEPS)

    Get PDF
    Observational and epidemiological studies suggest that menopausal hormone therapy (MHT) reduces cardiovascular disease (CVD) risk. However, results from prospective trials showed neutral or adverse effects most likely due to differences in participant demographics, such as age, timing of initiation of treatment, and preexisting cardiovascular disease, which reflected in part the lack of basic science information on mechanisms of action of hormones on the vasculature at the time clinical trials were designed. The Kronos Early Estrogen Replacement Study (KEEPS) is a prospective, randomized, controlled trial designed, using findings from basic science studies, to test the hypothesis that MHT when initiated early in menopause reduces progression of atherosclerosis. KEEPS participants are younger, healthier, and within 3 years of menopause thus matching more closely demographics of women in prior observational and epidemiological studies than women in the Women’s Health Initiative hormone trials. KEEPS will provide information relevant to the critical timing hypothesis for MHT use in reducing risk for CVD

    Network-Based Functional Prediction Augments Genetic Association To Predict Candidate Genes for Histamine Hypersensitivity in Mice.

    No full text
    Genetic mapping is a primary tool of genetics in model organisms; however, many quantitative trait loci (QTL) contain tens or hundreds of positional candidate genes. Prioritizing these genes for validation is often ad hoc and biased by previous findings. Here we present a technique for prioritizing positional candidates based on computationally inferred gene function. Our method uses machine learning with functional genomic networks, whose links encode functional associations among genes, to identify network-based signatures of functional association to a trait of interest. We demonstrate the method by functionally ranking positional candidates in a large locus on mouse Chr 6 (45.9 Mb to 127.8 Mb) associated with histamine hypersensitivity (Histh). Histh is characterized by systemic vascular leakage and edema in response to histamine challenge, which can lead to multiple organ failure and death. Although Histh risk is strongly influenced by genetics, little is known about its underlying molecular or genetic causes, due to genetic and physiological complexity of the trait. To dissect this complexity, we ranked genes in the Histh locus by predicting functional association with multiple Histh-related processes. We integrated these predictions with new single nucleotide polymorphism (SNP) association data derived from a survey of 23 inbred mouse strains and congenic mapping data. The top-ranked genes included Cxcl12, Ret, Cacna1c, and Cntn3, all of which had strong functional associations and were proximal to SNPs segregating with Histh. These results demonstrate the power of network-based computational methods to nominate highly plausible quantitative trait genes even in challenging cases involving large QTL and extreme trait complexity
    • …
    corecore