534 research outputs found

    Time-dependent quantum transport: an exact formulation based on TDDFT

    Full text link
    An exact theoretical framework based on Time Dependent Density Functional Theory (TDDFT) is proposed in order to deal with the time-dependent quantum transport in fully interacting systems. We use a \textit{partition-free} approach by Cini in which the whole system is in equilibrium before an external electric field is switched on. Our theory includes the interactions between the leads and between the leads and the device. It is well suited for calculating measurable transient phenomena as well as a.c. and other time-dependent responses. We show that the steady-state current results from a \textit{dephasing mechanism} provided the leads are macroscopic and the device is finite. In the d.c. case, we obtain a Landauer-like formula when the effective potential of TDDFT is uniform deep inside the electrodes.Comment: final version, 7 pages, 1 figur

    Efficiently combining water reuse and desalination through Forward Osmosis-Reverse Osmosis (FO-RO) hybrids: a critical review

    Get PDF
    Forward osmosis (FO) is a promising membrane technology to combine seawater desalination and water reuse. More specifically, in a FO-reverse osmosis (RO) hybrid process, high quality water recovered from the wastewater stream is used to dilute seawater before RO treatment. As such, lower desalination energy needs and/or water augmentation can be obtained while delivering safe water for direct potable reuse thanks to the double dense membrane barrier protection. Typically, FO-RO hybrid can be a credible alternative to new desalination facilities or to implementation of stand-alone water reuse schemes. However, apart from the societal (public perception of water reuse for potable application) and water management challenges (proximity of wastewater and desalination plants), FO-RO hybrid has to overcome technical limitation such as low FO permeation flux to become economically attractive. Recent developments (i.e., improved FO membranes, use of pressure assisted osmosis, PAO) demonstrated significant improvement in water flux. However, flux improvement is associated with drawbacks, such as increased fouling behaviour, lower rejection of trace organic compounds (TrOCs) in PAO operation, and limitation in FO membrane mechanical resistance, which need to be better considered. To support successful implementation of FO-RO hybrid in the industry, further work is required regarding up-scaling to apprehend full-scale challenges in term of mass transfer limitation, pressure drop, fouling and cleaning strategies on a module scale. In addition, refined economics assessment is expected to integrate fouling and other maintenance costs/savings of the FO/PAO-RO hybrid systems, as well as cost savings from any treatment step avoided in the water recycling

    Practical considerations for operability of an 8″ spiral wound forward osmosis module: Hydrodynamics, fouling behaviour and cleaning strategy

    Full text link
    © 2016 Elsevier B.V. A better understanding of large spiral wound forward osmosis (SW FO) module operation is needed to provide practical insight for a full-scale FO practical implementation desalination plant. Therefore, this study investigated two different 8″ SW FO modules (i.e. cellulose tri acetate, CTA and thin film composite, TFC) in terms of hydrodynamics, operating pressure, water and solute fluxes, fouling behaviour and cleaning strategy. For both modules, a significantly lower flow rate was required in the draw channel than in the feed channel due to important pressure-drop in the draw channel and was a particularly critical operating challenge in the CTA module when permeate spacers are used. Under FO and pressure assisted osmosis (PAO, up to 2.5 bar) operations, the TFC module featured higher water flux and lower reverse salt flux than the CTA module. For both modules, fouling tests demonstrated that feed inlet pressure was more sensitive to foulant deposition than the flux, thus confirming that FO fouling deposition occurs in the feed channel rather than on the membrane surface. Osmotic backwash combined with physical cleaning used in this study confirmed to be effective and adapted to large-scale FO module operation

    Mass-Transport Models with Multiple-Chipping Processes

    Get PDF
    We study mass-transport models with multiple-chipping processes. The rates of these processes are dependent on the chip size and mass of the fragmenting site. In this context, we consider k-chip moves (where k = 1, 2, 3, ....); and combinations of 1-chip, 2-chip and 3-chip moves. The corresponding mean-field (MF) equations are solved to obtain the steady-state probability distributions, P (m) vs. m. We also undertake Monte Carlo (MC) simulations of these models. The MC results are in excellent agreement with the corresponding MF results, demonstrating that MF theory is exact for these models.Comment: 18 pages, 4 figures, To appear in European Physical Journal

    Techno-economic analysis of forward osmosis pre-concentration before an anaerobic membrane bioreactor: Impact of draw solute and membrane material

    Get PDF
    This research investigated the impact of draw solute and membrane material on the economic balance of a forward osmosis (FO) system pre-concentrating municipal sewage prior to an anaerobic membrane bioreactor (AnMBR). Eight and three different draw solutes were evaluated for cellulose triacetate (CTA) and polyamide thin film composite (TFC) membranes, respectively. The material of the FO membrane was a key economic driver since the net cost of TFC membrane was substantially lower than the CTA membrane. The draw solute had a moderate impact on the economic balance. The most economically favourable draw solutes were sodium acetate and calcium chloride for the CTA membrane and magnesium chloride for the TFC membrane. The FO + AnMBR performance was modelled for both FO membrane materials and each draw solute considering three FO recoveries (50, 80 and 90%). The estimated COD removal efficiency of the AnMBR was similar regardless of the draw solute and FO membrane material. However, the COD and draw solute concentrations in the permeate and digestate increased as the FO recovery increased. These results highlight that FO membranes with high permselectivity are needed to improve the economic balance of mainstream AnMBR and to ensure the quality of the permeate and digestate

    Fourier Transform Scanning Tunneling Spectroscopy: the possibility to obtain constant energy maps and the band dispersion using a local measurement

    Full text link
    We present here an overview of the Fourier Transform Scanning Tunneling spectroscopy technique (FT-STS). This technique allows one to probe the electronic properties of a two-dimensional system by analyzing the standing waves formed in the vicinity of defects. We review both the experimental and theoretical aspects of this approach, basing our analysis on some of our previous results, as well as on other results described in the literature. We explain how the topology of the constant energy maps can be deduced from the FT of dI/dV map images which exhibit standing waves patterns. We show that not only the position of the features observed in the FT maps, but also their shape can be explained using different theoretical models of different levels of approximation. Thus, starting with the classical and well known expression of the Lindhard susceptibility which describes the screening of electron in a free electron gas, we show that from the momentum dependence of the susceptibility we can deduce the topology of the constant energy maps in a joint density of states approximation (JDOS). We describe how some of the specific features predicted by the JDOS are (or are not) observed experimentally in the FT maps. The role of the phase factors which are neglected in the rough JDOS approximation is described using the stationary phase conditions. We present also the technique of the T-matrix approximation, which takes into account accurately these phase factors. This technique has been successfully applied to normal metals, as well as to systems with more complicated constant energy contours. We present results recently obtained on graphene systems which demonstrate the power of this technique, and the usefulness of local measurements for determining the band structure, the map of the Fermi energy and the constant-energy maps.Comment: 33 pages, 15 figures; invited review article, to appear in Journal of Physics D: Applied Physic

    A general method to determine replica symmetry breaking transitions

    Get PDF
    We introduce a new parameter to investigate replica symmetry breaking transitions using finite-size scaling methods. Based on exact equalities initially derived by F. Guerra this parameter is a direct check of the self-averaging character of the spin-glass order parameter. This new parameter can be used to study models with time reversal symmetry but its greatest interest concerns models where this symmetry is absent. We apply the method to long-range and short-range Ising spin glasses with and without magnetic field as well as short-range multispin interaction spin glasses.Comment: 5 pages, 4 figures, Revtex fil

    Arylmethylamino steroids as antiparasitic agents

    Get PDF
    In search of antiparasitic agents, we here identify arylmethylamino steroids as potent compounds and characterize more than 60 derivatives. The lead compound 1o is fast acting and highly active against intraerythrocytic stages of chloroquine-sensitive and resistant Plasmodium falciparum parasites (IC50 1–5?nM) as well as against gametocytes. In P. berghei-infected mice, oral administration of 1o drastically reduces parasitaemia and cures the animals. Furthermore, 1o efficiently blocks parasite transmission from mice to mosquitoes. The steroid compounds show low cytotoxicity in mammalian cells and do not induce acute toxicity symptoms in mice. Moreover, 1o has a remarkable activity against the blood-feeding trematode parasite Schistosoma mansoni. The steroid and the hydroxyarylmethylamino moieties are essential for antimalarial activity supporting a chelate-based quinone methide mechanism involving metal or haem bioactivation. This study identifies chemical scaffolds that are rapidly internalized into blood-feeding parasites
    corecore