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Abstract
We study mass-transport models with multiple-chippingcpeses. The rates of these processes are
dependent on the chip size and mass of the fragmenting sitéhid context, we considét-chip moves
(wherek = 1,2, 3,....); and combinations of-chip, 2-chip and3-chip moves. The corresponding mean-
field (MF) equations are solved to obtain the steady-staibahility distributions,P(m) vs. m. We also
undertake Monte Carlo (MC) simulations of these models. Nieresults are in excellent agreement with

the corresponding MF results, demonstrating that MF thesoexact for these models.
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. INTRODUCTION

The formation of structures at the nanoscale has attradtadéattention|[1, 2]. The morpho-
logical and statistical properties of these systems aremed by microscopic processes like ad-
sorption and desorption, fragmentation, diffusion andregation, etc. Different non-equilibrium
steady-states can be accessed and phase transitionsdnfiineerates of the these processes are
varied. Several experimental and theoretical studies fumeesed on adatom and cluster diffusion
[3-9]. However, there are relatively few studies which d¢desthe fragmentation of clusters,
expected to commonly occur during hyperthermal ion beanosiépns and sputter depositions
[10-+13]. The bombardment of clusters by energetic ionsdedlarge island boundary fluctua-
tionswhich cause multiple-chipping events[10, 14]. These systieave received limited attention
to date because of the unavailability of experimental psabebserve fragmentation. Further, the
occurrence of these events is often on a pico-second tinfe seaking collection of data difficult.

The processes of fragmentation and aggregation signifjcaffiect the growth mechanism by
altering the number of small and large clusters. The stesale- cluster-size distribution in these
systems is generally characterized by an exponentiallsndeg tail [10/15]. In contrast, systems

with adatom and cluster diffusion exhibit steady-statéritigtions which are power laws|[7,19,/16]

In many physical systems, the fragmentation kernel depepds the masses of the chip size
and the fragmenting cluster. For example, recent expetsmanAw clusters sputtered from em-
beddedAwu nanoparticles report distinct chipping kernels for smalll darge clusters [16]. In
a related context, groups, herds, schools and flocks of dmiatgo exhibit size-dependent frag-
mentation|[17, 18]. Similar observations have been madbarcontext of polymerization [19],
gelation [19] and complex networks [20]. In all these systiethe steady-state distributions are
either exponentials or power laws or their combinations.

Fragmentation is thus a ubiquitous phenomenon, observadaniety of physical systems. In
the present paper, we study conserved mass models withdepssdent chipping — the fragmen-
tation rates depend on the chip size and mass of the fragmgesite. We obtain the steady-state
mass distributions of these models in the mean-field (MFitliend compare them with results
from Monte Carlo (MC) simulations. The purpose of our stuglioi clarify the generic features of
steady-state distributions in the presence of multipighg processes.

This paper is organized as follows. In Section 2, we study et®with mass-dependent



fragmentation and aggregation processes. We focus on muadldl k£-chip moves (wheré =
1,2, 3,...); and combinations of-chip, 2-chip and3-chip moves. In Section 3, we present MC
results for these models, and compare them with the comelspg MF solutions. We conclude

this paper with a summary and discussion in Section 4.

II. TRANSPORT MODELSWITH MASS-DEPENDENT CHIPPING

Consider a mass-transport model on a discrete lattice vihere is no adsorption or desorption.
To begin with, masses;(0) = 0, 1,2, etc. are placed randomly at each siteith an overall
mass density. The evolution of the system is defined by the fragmentatienméd g,,,(n), i.e.,
the rate for a mass (< m) to chip from a site with mass:. The n-chip then deposits on a
randomly-chosen nearest neighbor. The mass of the neigitlisrup, while that of the departure
site decreases, with the total mass of the system remaioimgecved. Typically, the steady-state
mass distributionP(m)] of sites with massn in these models shows either exponential or power-
law decay withm.

We study the above model within a MF approximation which lesegck of the distribution of
masses, ignoring correlations in the occupancy of adjaited. Although the MF theory suffers
from this deficiency, our MC simulations in Sec. 3 show thgiues an accurate description of the
above model, even in the 1-dimensional case. et t) denote the probability that a site has
massm at timet. In the MF limit, P(m, t) evolves as follows:

m

%p(m t) = —P(m,t) > gn(mi) — P(m,t) > P(ma,t) Y guy(m1)
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Equations[(I1){(2) enumerate all possible ways in which@with massn may change its mass.
The first term on the right-hand-side (RHS) of Eg. (1) is thes¥” due to chipping, while the

second term represents the loss due to transfer of mass fremglabor chipping. The third and



fourth terms are the “gain” terms which represent the waysw/tiich a site with mass greater
(lesser) thann can lose (gain) the excess (deficit) to yield massThe terms of EqL(2) can be

interpreted similarly. The above equations satisfy the sulm

d o0 [o.¢]
E%P(m,o:o, or mz::OP(m,t):l, (3)

as required.

Next we consider a specific form of the mass-dependent atgggernel,g,,(n) = D(m)n~¢,
wherea > 0 is a parameter. This kernel allows for chips of all sizeshwinall masses being
more likely to fragment from a site than large masses. It peeglly relevant in the context of
fragmentation of sputtered clusters. As revealed by Augdrthermal-desorption spectroscopy
measurements performed on these nanostructures, fragofemtfew atoms display a large mo-
bility on the surface which rapidly decreases with increggiluster size [11, 21].

Multiple-chip models may be interpreted as limiting castthe above model. Far = oo,
this kernel only gives rise tb-chip processes. For large valueshgfwe expect the fragmentation
to be dominated by-chip and2-chip processes with different rates. As the value @f reduced,
the possibility of higher-chip processes becomes apgskci&inally, in the limita = 0, chips of
any size are equally likely. Subsequently, we stuehip models, { + 2)-chip models, etc. as
approximations to the model with),,(n) = D(m)n=°. It should be noted that the *-chipping
kernel, unlike the multiple-chip models, includes the ufbn move, i.e., the movement of the
entire massn at a site. The steady-state distribution for this model balldiscussed in Section
1.

A. k-chip modelsand the case g,,(n) = g(n)

First, we study:-chip models which act as building blocks to understand rsadevhich chips

of different sizes are allowed. The chipping kernel has thmf
gm(n) = woy, k. (4)

The corresponding rate equations fofm, t), obtained by substituting Ed.1(4) in Eqisl (L)-(2), are

as follows (absorbingy into the timet):

%P(m,t) = —s,P(m,t) + P(m+k,t), m<k. (6)
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Here,s;(t) =>_>_, P(m,t) is the probability of sites having massor more.

m=k

In order to obtain the steady-state solutiét(m), the generating functiorQ(z,t) =

Yo, Z™P(m,t) is computed from the above equations, &g/t is set to O in the steady

state.P(m) is then obtained by evaluating the integral

P(m) = L dz (2) m > 1, (7)

m+1’
2m Jo oz

where the contouf”’ encircles the origin in the complex plane. The steady-gfateerating func-

tion of thek-chip model is

0lz) = 2(s1 — 89) + 2%(sg — 83) + - +2Fs(1 — 31). @)

(1 — sgz®)

The conservation of mass requires thaf’_, mP(m) = p, wherep is the mass density. Putting

dQ/dz|__, = p, we obtain

p= . ©)

The correspondin@ (m), evaluated from Eq[{7), comprises/obranches [22]:

P(m) = (s; — Si+1)sl(<:m_i)/k5m0dm,k),i' (10)

(We have defined, = 1 in the above equation.) Thus all the branches decay exgiattg The
occupation probability of thé" branch {(=0—k—1)isS; = P(i)+P(i+k)+P(i+2k)+....
Notice that because of the nature of thehip moves, the initial populatiof; in each of the
branches is conserved at all times. Therefore, theré amnserved quantities in addition to the
conserved mass. These enable us to determing’the terms ofp and thes;’s.

We briefly discuss the solution of the 1-chip model becauses abiquitous nature. On substi-
tuting £ = 1 in Eq. [10), the steady-state distribution simplifies t8,[24].

P(m) = sm— g7+ — ﬁ (ﬁpp) - (11)

This 1-chip solution is actually valid for a wide range of masansport models. It arises
whenever the fragmentation kerngl,(n) = g¢(n), i.e., the chipping rate is independent of
the mass of the departure site|[22]. This can be verified bgtgubng Eq. [(11) in Eqs.[{1)-
(@). Further, the above kernels can be written as a produtt@ion-negative functions, i.e.,
gm(n) = f(n)h(m —n)/h(m) whereh(x) is a constant here. They therefore satisfy the necessary
and sufficient condition for the steady-state distribusitlbecome factorizable. Evans et al. have

shown that mean field theory is exact for this class of mo@&s§ [
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B. (1+2)-chip modée

We next consider a combination of 1-chip and 2-chip proe3ar MC simulations show that
these mimic they,,,(n) = D(m)n~* model foraw 2 4. We consider the general (1+2)-chip model

with the chipping kernel:
gm(n) == wlén,l(sm,l + <w25n,1 + w35n,2>9(m - 2)7 (12)

wherew, w,y, w3 are the respective chipping rates did) = 1 for = > 0. Notice that the above
kernel has an explicit:-dependence, i.e., the 1-chip solution is not a steadg-stdution for the
corresponding rate equations except in special cases.

Replacingg,,(n) in Egs. [1)4(2), we obtain the following rate equations:

%P(m t) = —[wi(s1 = s2) + (w2 +ws)(1 + s2)]P(m, 1) + wo P(m + 1,1)

+wzP(m + 2,t) + [wi(s1 — s2) + wase] P(m — 1,t)

FwgseP(m —2,1), m > 2, (13)
%P(l t) = —[wi(1+ 51— 82) + (we + ws)s2] P(1,t) + waP(2,t) + wsP(3,1)

+wi(s1 = s2) + w2s2] P(0, 1), (14)
%P(O B = —[wi(s1 — 52) + (s + ws)sal P(0,8) + wi P(L, 1) + wsP(2,8).  (15)

As usual, we are interested in the steady-state solutidm®friodel. The steady-state generat-
ing function can be obtained using E4s.J(13)}(15), and sdgebea yields

N(z)

Qz) = 7 (16)
D(z)
N(Z) = w382(1 — 81)23 + [w281(1 — 82) — w131(31 — 82) + U)381(1 — 82>]22
+1U3(81 — 82)2, (17)
D(z) = —ws3s92® — [wasy + wy(s1 — 82) + w3sg] 2% + (wo + w3) 2z + ws. (18)
Further, the relation between the mass densinds;, s; is obtained fromiQ(z /dz} =pas

follows:
WaoS1 + 2’(1]3(81 + 82)

U)Q(l — 82) + 211)3(1 - Sg) - w1(31 — 82) )
To obtainP(m), we need to inver)(z) using Eq.[(¥). This integral is done by finding the roots

(19)

p:

of the numeratoV (=) (which is of the formzx quadratic inz) and the denominatdp(z) (which

is cubic inz), and rewritingQ(z) in the form of partial fractions. This procedure often prove
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be very cumbersome. An easier route is to solve the recwenetation forP(m), which can be
obtained directly from Eqsl_(13)-(1L5) by setting the LHS ¢owin the steady state. It may also be
obtained by comparing the coefficients of #ie- terms on either side of Ed. (116). Some algebra

yields the recurrence relation:

Wa + wg) SQ(ZUQ + wg) + ’LUl(Sl — 82)

(
P = — P(m—1 P(m—2
(m) S oPm— 1)+ - (m —2)
+s9P(m —3), m > 3. (20)
To obtain the solution, we assume that
P(m) = Az™. (21)
Substituting this form in EqL(20) results in a cubic equatfior x:
3+ <1 + %) x? — [32 + Wasz + wils1 = 5) x — 59 =0. (22)
Ws w3

The roots of this cubic equation are denotedcases, x3, and are all real in this case [26]. (For
brevity, we do not present their explicit forms.)

The steady-state solution may then be written as

Notice that the recurrence relation in EQ.](20) is validfer> 3. The following choice of the
coefficients4,, A, and A; ensures thaP(0), P(1) andP(2) also follow Eq. [28):

Al _ (1 — 81)1’23}3 — (81 — 82)(1’2 + .Tg) —+ (82 — 83)’ (24)

(z1 — z2) (21 — w3)
(I =s1)z1w3 4+ (51 — 82) (w1 + 23) — (52 — 53)
A2 a (.Tl — .I'Q)(CL’Q — 1’3) ’ (25)
A3 _ (1 — 81)113'11'2 — (81 — 82)(113'1 + {L'Q) + (82 — 83) . (26)

(z1 — x3) (72 — T3)

Of the three roots, we find that, |, | z2 |< 1 and| z3 |> 1. In order to ensure tha®(m) in
Eq. (23) is meaningful, we set; = 0. This condition, together with Ed._(L9), can be solved self-
consistently to obtain; ands, in terms ofw;, w,, w3 andp. The coefficientsA;, A, are thereby
determined, and the steady-state distribution of the @)-chip model is thus a combination of

two power-law (exponential) functions:
P(m) = Aya* + Agal. (27)
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As usual, the larger behavior is dominated by the slower of the two exponentials.

An alternative approach is to obtaih andA, interms of (1, z», x3, s1, s2) from the equations:

P(O) = 1—81:A1+A2, (28)
P(l) = S§1 — S92 = All’l + AQ.TQ. (29)

We can then treatif, =2, 73, s1, s2) as unknowns to be determined bycoupled equations as
follows:

(a) Thez;'s must satisfy the cubic equatidn (22).

(b) The normalization condition provides the constraint

Ay A

1= .
1—1’1 1—1’2

(30)

(c) Equation[(1DB) fop.
These equations can be solved numerically to obtain theavmks in terms ofv,, w,, w3, p and
thereby the solution.

It is useful to consider limits where the double-exponédiritiaction in Eq. [27) reverts to a
single-exponential form.
() w3 =0
If we substitutew; = 0 in Eq. (12), the chipping kernel simplifies to

gm(n) = w16n,15m,1 + w25n719(m — 2) (31)

This model has only 1-chip processes, but the 1-chip ratéfeyeht for sites with one unit of
mass {» = 1) and those with two or more units of mass (> 2). In this limit, the recurrence
relation in Eq.[(2D) reduces to
P(m) = {32 + ﬂ(31 - 52)} Pim—1), m>2. (32)
W
The resultant steady-state distribution has the folloviamg:
a2b£n7 m 2 17

P(m) = (33)

1—81, m:(),

where

U)Q(Sl — 82) by — w1(31 - 82) + W2 89
o = .

Ao =
2 w1(31 — 82) + ’(1]2827 Wo

(34)



We obtainsy, s; as functions ofuvy, wo, p:
—wa(1 + p) + Vwi (1 — p)2 + dwywap

2(’(1]1 — U)Q)

2
- . 36
52 wy + (wy — wa)sy (36)

The exponentially-decaying solution in EQ.{33) has a dififi slope from that in EqL(11). In
the limitw, = w,, the solution in Eq.[(33) reduces to the 1-chip solution of @4g).

(35)

S1 =

(i) wy = wo, ws arbitrary
If we substitutew; = w, in Eq. (12), the chipping kernel reduces to
gm(n) = (w10p1 + w30p2)0(m —n). (37)

This kernel has the functional form,,(n) = g(n), and the corresponding(m) is the 1-chip
solution in Eq. [(11).

C. (1+2+3)-chip modd

We now consider a model with the possibility of chipping 1 rBanits of mass:
Im(n) = W10n,10m1 + (W20p1 + W30pn2)0m,2 + (Wadn,1 + W50p2 + Wedn,3)0(m — 3). (38)

Substituting Eq.[(38) in Eqs.](1)4(2) yields the requiretkraquations, which we do not present
here. Some algebra yields the generating function:
N(2)
= 39
Q) = 5y (39)

N(z) = wgss(1 —51)2° + [— (wo + w3s1)(s2 — 83) + wy(se — s3)

+(ws + wg) (s2 — s183)] 2" + [ — wisi(s1 — s2) — (w2 + w3)s1(s2 — s3)

+(wa — wa)(s2 — s3) + 51(ws + w5 + we) | 2° + [ws(s1 — 52) + we(s2 — 53)] 2°

+we(s1 — $2)2, (40)
E(Z) = —w653z5 — [U)3(82 — 83) + (U)5 -+ w6)83]24 — [w1(31 — 82) + (U)Q —+ U)3)(82 — 83)
+(wy 4 ws + we) s3]z + (wy + ws + we) 2% + (ws + we)z + we. (41)

As before, the steady-state distribution is obtained froerecurrence relation fdr(m):
weP(m) = —(ws + we)P(m — 1) — (wy + w5 + wg) P(m — 2)
+ [wl(sl — 82) + (wg + ’LUg)(SQ — 53) + (’LU4 + ws + 'LU@)S;J,] P(m — 3)

+ [ws(s2 — s3) + (w5 + we)ss] P(m —4) + sswgP(m —5), m > 5. (42)
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SubstitutingP(m) = Bz™ in the above equation results in the following quintic eéurat

x5+<1+%)x4+<1+w4+w5)x3
We We

w Wy + W Wy + W
—[—1(31—52)+ 2 3(52—33)+(1+ 4 5)33] 2’

Weg We We
— |:(1+%> 83+%(82—83):|1’—83:O. (43)
We We

This quintic equation cannot be solved explicitly in ternisaalicals. However, we can generalize
the alternative approach described for the-@)-chip model subsequent to EQ.[27). The resultant
coupled equations (solved numerically) yield the requsellition for given values ofv; to wg
andp. Typically, P(m) for the (1+2+3)-chip model is a sum of three exponential fioms.

As before, it is instructive to examine some simple limitstog model.
(i) ws, ws, wg =0
This model has only 1-chip processes, but the chipping dgpend on the mass of the departure

site:
gm(n) = w10, 10m1 + W20y 10m.2 + W4d,10(m — 3). (44)

The corresponding distribution can be obtained from thepkfied version of Eq.[(4R2), or the
simplifiedQ(z) from Eqg. [39):

agbgn, m > 2,
P(m) = §1 — 82, M = 17 (45)

1-— S1, M = 0,
where

s = wi(s2 — s3) by — wi(s1 — s2) + wa(s2 — s3) + Wass (46)
[w1(51 — 82) + w2(52 — 83)]2 + 1114837 W4y

These results, along with the equation forenable us to determing’s in terms ofw;’s and
p. Itis straightforward to generalize Eqgb. [3B)4(34) and.Hg8)-(46) to thel-chip model with
different rates for departure-site masses= 1, m = 2,....... m > k.
(i) wg =0
With this substitution, the chipping kernel of E@. (38) reds to a generalized version of the
(1 4 2)-chip model discussed earlier: thechip and2-chip rates are now different for sites with

m = 1, m = 2 andm > 3. The recurrence relation in this case also yields a cubiatmu The
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steady-state probability distribution has the same forla@g27), but the decay rates of the two
exponential functions are distinct from those in £ql (2W)tHe limitw, = w, andws = ws, we
recover Eq.[(2]7).

(i) wy; = wy = wy andwsz = ws

This case corresponds to the chipping rates being indepénfléhe site mass. In this limit, the

chipping kernel in EqL(38) becomes
gm(n) = (wlén,l + w35n72 + w65n73)9(m — n) (47)

Hence, the steady-state distribution in this limit is thehip solution of Eq.[(1]1).

[11. MONTE CARLO SIMULATIONS

In this section, we present Monte Carlo (MC) results for safnthe models discussed earlier.
All simulations were performed on d-or 2+ lattices with periodic boundary conditions. The
lattice sizes werd. = 1024 ind = 1, andL? = 1282 in d = 2. The initial condition for a
run consists of a random distribution of masses with densitWe evolve the system using the
chipping ratey,,(n), and compute the mass distributittym). This quantity settles to equilibrium
for t > 25000 MCS - we show results foP(m) vs. m att = 50000 MCS. The statistical data
presented here was obtained as an average26uendependent runs.

First, we present results for the kerggl(n) = g(n), discussed in Sec. 2.1. In Fig. 1, we plot
P(m) vs. m obtained from 1d MC simulations withp = 5 and three different functional forms of
gm(n) =1,1/n,n%e"%?" andp = 5. The MC data sets are numerically coincident with each other
They are also in excellent agreement with the 1-chip saluticeq. [11) (denoted as a solid line),
which was obtained from the corresponding MF equations.d0bsequent results also show that
the MC data is described very well by the solutions of theeswonding MF equations, even for
d = 1. This demonstrates that the MF equations are exact in tlsepreontext [25].

Second, we present results for the (1+2)-chip model discugs Sec. 2.2. Fig. 2 shows
the steady-state distributions obtained fromd &nd 2«4 MC simulations withp = 5, andw; =
6,w, = 0.5 andws = 7. The solid line denotes the result in EQ.](27) - the corredpanroots
and coefficients are specified in the caption. The oscifattructure ofP(m) arises as one of the
roots is negative. For the wide range of parameter valueswsidered, one of the roots is always

found to be negative.
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Next, let us consider the arbitrary kerngl(n) = D(m)/n® with D(m) determined from
> D(m)/n* = 1. Unlike our earlier models, this fragmentation kernelaBaliffusion, which
corresponds to the movement of the entire mas a site to a randomly chosen neighbor. In Fig.
3, we showP(m) vs. m from MC simulations ind = 1,2 with o = 3 andp = 5. The solid line
denotes the analytical result for the analogous-@ + 3)-chip model withw;’s specified in the
caption. Clearly, thel(+ 2 + 3)-chip approximation captures the original model rathelt wéhis
is true fora 2 2.

Finally, in Fig. 4, we showP(m) vs. m from MC simulations ind = 1, 2 for the 1-chip model
with different chip rates uptex > 5, i.e., g, (n) = dp1[W16m1 + Wb 2 + W30 3 + W4l a +
wsf(m — 5)]. We show results fop = 5 and thew;,’s are specified in the caption. The solid
line denotes the analytical solution obtained by generajithe solution in Eqs[(45)-(46). This

solution is exponential fom > 4.

V. SUMMARY AND DISCUSSION

We conclude this paper with a summary and discussion of thealteepresented here. We
have studied the steady-state distributiaR&f) vs. m] for mass-transport models with multiple-
chipping processes which depend upon the masses of thetulepsites and the chips. These
models are relevant for a variety of physical applicatioimsgeneral, a site with mass could
have 1, 2, 3,..m units of mass chip with different rates and aggregate witleighbor. In this
context, we study:-chip processes (whefe= 1,2,3,...) and combinations thereof. We undertake
Monte Carlo (MC) simulations of these models, and analifficiudy the steady-state solutions
of the corresponding mean-field (MF) equations. Our MC ttesarke in excellent agreement with
the MF solutions, demonstrating that MF theory is exact ia tdontext. This is true even when
the kernels are not factorizable [25], and requires furitngstigation.

The steady-state distribution of tikechip models hag branches, each of which decays expo-
nentially with the same slope. We find that a large class qfihg kernels, where,,(n) is inde-
pendent ofn, gives rise to an exponentially-decaying distributiétim) = (1+p)~t[p/(1+p)]™,
wherep is the mass density. This is also the MF solution for the Jchodel, where one unit of
mass fragments from a site and aggregates with a randomleamearest-neighbor.

We have also studied models with a combination of 1-chiphip-and 3-chip processes. The

steady-state distributions of thi¢ + 2)-chip model and1 + 2 + 3)-chip model are sums of two
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exponential functions and three exponential functionspeetively. We expect the steady-state
distribution of the(1+2+. . . + k)-chip model to be a sum d@fexponentially-decaying functions.
We have also examined several limiting cases of the abovesisio®ur conclusion is that the
steady-state distribution is sensitive to slight changdhke chipping kernel.

Finally, it is relevant to discuss physical processes wigigle rise to multi-exponential mass
distributions vs. power-law distributions. Power laws édeen observed in a class of mass-
transport models where single-particle adsorption orgihigp processes and (mass-independent)
diffusion processes maintain a delicate balance betwetotier and upper ends of the mass
spectrum([7=9]. On the other hand, mass-dependent fragii@maind aggregation precludes this
balance. Consequently, all our models exhibit exponedisttibutions. These would be relevant
in the context of ion-beam and sputter-deposited nandstes; animal group distributions,

polymerization, gelation and complex networks.
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FIG. 1: Steady-state probability distribution8(jn) vs. m] from d = 1 MC simulations with three different
forms ofg,,,(n). The data sets are plotted on a linear-logarithmic scale.dBtails of the MC simulations

are provided in the text. The mass density is 5. The solid line denotes the 1-chip solution in Eq.J(11).
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FIG. 2: Plot of P(m) vs. m for the (1+2)-chip model, obtained from MC simulationsdn= 1,2 with
p = 5. We usedy,,(n) in Eq. (12) withw; = 6, ws = 0.5 andws = 7. The solid line denotes the solution
in Eq. (27) withz; = 0.8427, 2o = —0.6498, A; = 0.1475, Ay = 0.1021.
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FIG. 3: Plot of P(m) vs. m, obtained from MC simulations id = 1,2 with kernelg,,(n) = D(m)/n®
[where D(m)~! = 3"  n=*]for a = 3 andp = 5. The solid line denotes the result for the analogous
(1+2+3)-chip model withv; = 1, we = 8/9, wg = 1/9, wy = 216/251, ws = 27/251 andwg = 8/251.
The solution is a sum of three exponentials with= 0.8372, x5 = —0.0594 — 0.12634, x3 = —0.0594 +

0.1263¢, A; = 0.1590, A2 = 0.0118 + 0.0090:, A3z = 0.0118 — 0.0090s.
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FIG. 4: Plot of P(m) vs. m for the 1-chip model with different chip rates upta > 5. The symbols

denote MC simulation results ih = 1,2 with p = 5 andw; = 1, we = 2, w3 = 3, wy = 4, ws = 5.
The solid line denotes the generalization of EQs| (45)-(d®e solution decays exponentially for > 4,

P(m) = 0.5133 x (0.7421)™.

18



	I Introduction
	II Transport Models with Mass-Dependent Chipping
	A k-chip models and the case gm(n)=g(n)
	B (1+2)-chip model
	C (1+2+3)-chip model

	III Monte Carlo Simulations
	IV Summary and Discussion
	 References

