1,241 research outputs found

    Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    Get PDF
    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium–fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and 11B nuclear magnetic resonance studies suggest that co-intercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties

    The Shine-Dalgarno sequence of riboswitch-regulated single mRNAs shows ligand-dependent accessibility bursts

    Get PDF
    In response to intracellular signals in Gram-negative bacteria, translational riboswitches—commonly embedded in messenger RNAs (mRNAs)—regulate gene expression through inhibition of translation initiation. It is generally thought that this regulation originates from occlusion of the Shine-Dalgarno (SD) sequence upon ligand binding; however, little direct evidence exists. Here we develop Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS) to investigate the ligand-dependent accessibility of the SD sequence of an mRNA hosting the 7-aminomethyl-7-deazaguanine (preQ_1)-sensing riboswitch. Spike train analysis reveals that individual mRNA molecules alternate between two conformational states, distinguished by ‘bursts’ of probe binding associated with increased SD sequence accessibility. Addition of preQ_1 decreases the lifetime of the SD’s high-accessibility (bursting) state and prolongs the time between bursts. In addition, ligand-jump experiments reveal imperfect riboswitching of single mRNA molecules. Such complex ligand sensing by individual mRNA molecules rationalizes the nuanced ligand response observed during bulk mRNA translation

    Tratamiento asistido por artroscopia de las fracturas de radio distal

    Get PDF
    ResumenLa artroscopia proporciona una valoración directa de la superficie articular y permite detectar lesiones asociadas en las fracturas de la extremidad distal del radio. Su incorporación al tratamiento de estas fracturas ha supuesto un mejor control de la reducción de los trazos articulares, pero se trata de una técnica compleja que aún no está generalizada entre la mayoría de los cirujanos ortopédicos y/o de la mano y la muñeca.Se realiza una revisión y actualización de las ventajas, las indicaciones, las claves técnicas, los resultados y los datos científicos de su utilidad para el tratamiento de las fracturas del radio distal.AbstractArthroscopy provides a direct evaluation of the joint surface and enables associated injuries to be detected in fractures of the distal end of the radius. Although its incorporation into the treatment of these fractures has led to a better control in the reduction of joint traces, it is a complicated technique that is still not in general use by the majority of orthopaedic and/or hand and wrist surgeons.A review is presented here, as well as an update of the advantages, indications, the key techniques, results, and scientific data of its use in the treatment of distal radius fractures

    Peptide−Nanowire Hybrid Materials for Selective Sensing of Small Molecules

    Get PDF
    The development of a miniaturized sensing platform for the selective detection of chemical odorants could stimulate exciting scientific and technological opportunities. Oligopeptides are robust substrates for the selective recognition of a variety of chemical and biological species. Likewise, semiconducting nanowires are extremely sensitive gas sensors. Here we explore the possibilities and chemistries of linking peptides to silicon nanowire sensors for the selective detection of small molecules. The silica surface of the nanowires is passivated with peptides using amide coupling chemistry. The peptide/nanowire sensors can be designed, through the peptide sequence, to exhibit orthogonal responses to acetic acid and ammonia vapors, and can detect traces of these gases from “chemically camouflaged” mixtures. Through both theory and experiment, we find that this sensing selectivity arises from both acid/base reactivity and from molecular structure. These results provide a model platform for what can be achieved in terms of selective and sensitive “electronic noses.

    RNA promotes the formation of spatial compartments in the nucleus

    Get PDF
    The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the location of all RNAs relative to DNA and other RNAs. Using this approach, we identify many RNAs that are localized near their transcriptional loci (RNA-DNA) together with other diffusible ncRNAs (RNA-RNA) within higher-order DNA structures (DNA-DNA). These RNA-chromatin compartments span three major classes of nuclear functions: RNA processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and histone mRNA processing), heterochromatin assembly, and gene regulation. More generally, we identify hundreds of ncRNAs that form stable nuclear compartments in spatial proximity to their transcriptional loci. We find that dozens of nuclear compartments require RNA to guide protein regulators into these 3D structures, and focusing on several ncRNAs, we show that these ncRNAs specifically regulate heterochromatin assembly and the expression of genes contained within these compartments. Together, our results demonstrate a unique mechanism by which RNA acts to shape nuclear structure by forming high concentration territories immediately upon transcription, binding to diffusible regulators, and guiding them into spatial compartments to regulate a wide range of essential nuclear functions

    Rapid evolution of a floral trait following acquisition of novel pollinators

    Get PDF
    Changes in the pollinator assemblage visiting a plant can have consequences for reproductive success and floral evolution. We studied a recent plant trans‐continental range expansion to test whether the acquisition of new pollinator functional groups can lead to rapid adaptive evolution of flowers. In Digitalis purpurea, we compared flower visitors, floral traits and natural selection between native European populations and those in two Neotropical regions, naturalised after independent introductions. Bumblebees are the main pollinators in native populations while both bumblebees and hummingbirds are important visitors in the new range. We confirmed that the birds are effective pollinators and deposit more pollen grains on stigmas than bumblebees. We found convergent changes in the two new regions towards larger proximal corolla tubes, a floral trait that restricts access to nectar to visitors with long mouthparts. There was a strong positive linear selection for this trait in the introduced populations, particularly on the length of the proximal corolla tube, consistent with the addition of hummingbirds as pollinators. Synthesis. The addition of new pollinators is likely to happen often as humans influence the ranges of plants and pollinators but it is also a common feature in the long‐term evolution of the angiosperms. We show how novel selection followed by very rapid evolutionary change can be an important force behind the extraordinary diversity of flower

    RNA promotes the formation of spatial compartments in the nucleus

    Get PDF
    The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that are compartmentalized within three-dimensional (3D) structures involved in shared functional and regulatory processes. Although RNA has long been proposed to play a global role in organizing nuclear structure, exploring the role of RNA in shaping nuclear structure has remained a challenge because no existing methods can simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts within 3D structures. To address this, we developed RNA & DNA SPRITE (RD-SPRITE) to comprehensively map the location of all RNAs relative to DNA and other RNAs. Using this approach, we identify many RNAs that are localized near their transcriptional loci (RNA-DNA) together with other diffusible ncRNAs (RNA-RNA) within higher-order DNA structures (DNA-DNA). These RNA-chromatin compartments span three major classes of nuclear functions: RNA processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and histone mRNA processing), heterochromatin assembly, and gene regulation. More generally, we identify hundreds of ncRNAs that form stable nuclear compartments in spatial proximity to their transcriptional loci. We find that dozens of nuclear compartments require RNA to guide protein regulators into these 3D structures, and focusing on several ncRNAs, we show that these ncRNAs specifically regulate heterochromatin assembly and the expression of genes contained within these compartments. Together, our results demonstrate a unique mechanism by which RNA acts to shape nuclear structure by forming high concentration territories immediately upon transcription, binding to diffusible regulators, and guiding them into spatial compartments to regulate a wide range of essential nuclear functions

    Single Molecule Cluster Analysis dissects splicing pathway conformational dynamics

    Get PDF
    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines

    The Distance to NGC 1316 (Fornax A) From Observations of Four Type Ia Supernovae

    Get PDF
    The giant elliptical galaxy NGC 1316 (Fornax A) is a well-studied member of the Fornax Cluster and a prolific producer of Type Ia supernovae, having hosted four observed events since 1980. Here we present detailed optical and near-infrared light curves of the spectroscopically normal SN 2006dd. These data are used, along with previously published photometry of the normal SN 1980N and SN 1981D, and the fast-declining, low-luminosity SN 2006mr, to compute independent estimates of the host reddening for each supernova, and the distance to NGC 1316. From the three normal supernovae, we find a distance of 17.8 +/- 0.3 (random) +/- 0.3 (systematic) Mpc for Ho = 72. Distance moduli derived from the "EBV" and Tripp methods give values that are mutually consistent to 4 -- 8%. Moreover, the weighted means of the distance moduli for these three SNe for three methods agree to within 3%. This consistency is encouraging and supports the premise that Type Ia supernovae are reliable distance indicators at the 5% precision level or better. On the other hand, the two methods used to estimate the distance of the fast-declining SN 2006mr both yield a distance to NGC 1316 which is 25-30% larger. This disparity casts doubt on the suitability of fast-declining events for estimating extragalactic distances. Modest-to-negligible host galaxy reddening values are derived for all four supernovae. Nevertheless, two of them (SN 2006dd and SN 2006mr) show strong NaID interstellar lines in the host galaxy system. The strength of this absorption is completely inconsistent with the small reddening values derived from the supernova light curves if the gas in NGC 1316 is typical of that found in the interstellar medium of the Milky Way. In addition, the equivalent width of the NaID lines in SN 2006dd appear to have weakened significantly some 100-150 days after explosion.Comment: 50 pages, 13 figures, 10 tables; constructive comments welcome. Accepted for publication in A

    Sistema on-line de predicción de emergencia de malezas

    Get PDF
    Con el objetivo de poner a disposición de productores y asesores agronómicos la información proporcionada por distintos modelos en tiempo real y de una manera amigable, se desarrolló una aplicación web que automatiza el cálculo de la emergencia empleando los pronósticos del tiempo de la región y presenta de manera gráfica las estimaciones en forma diaria y acumulada.Sociedad Argentina de Informática e Investigación Operativ
    corecore