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Abstract

The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns 

from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the 

proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-

mRNA substrate remain poorly understood, a challenge that persists for many biomolecular 

machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) 

tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. 

By clustering common dynamic behaviors derived from selectively blocked splicing reactions, 

SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-

dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ 

splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel 

framework for interpreting complex single molecule behaviors that should prove widely useful for 

the comprehensive analysis of a plethora of dynamic cellular machines.

Introduction

Conformational dynamics play a key role in every aspect of RNA biology, such as in RNA 

transcription, splicing and translation
1–3

. The quantitative measurement and interpretation of 

Correspondences should be addressed to N.G.W. (; Email: nwalter@umich.edu)
5Present address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125-0001, 
USA. (M.R.B); National Evolutionary Synthesis Center, Durham, NC 27705-4667, USA. (J.S.M.).
6These authors contributed equally to this work.

Author Contributions
M.L.K. and R.K. performed the in vitro splicing verification assays. M.L.K. and M.R.B. performed the single molecule experiments 
and performed data analysis. M.L.K. expressed and purified the Prp16DN protein. M.R.B. and J.S.M. wrote and developed the 
MATLAB scripts for SiMCAn. M.L.K. prepared all fluorescent substrates and yeast whole cell extracts. M.R.B., J.S.M., M.L.K., J.A., 
A.L., and N.G.W jointly wrote the manuscript.

Competing Financial Interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:
Nat Methods. 2015 November ; 12(11): 1077–1084. doi:10.1038/nmeth.3602.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



these dynamics are of great importance for an understanding of the common principles 

underlying the biological function of RNA
2–4

. Single molecule fluorescence approaches 

have recently emerged as a powerful toolset to dissect the structural dynamics that form the 

foundation of biomolecular machines functioning at the nanometer scale
5–9

. For example, 

single molecule fluorescence energy transfer (smFRET) has been implemented to dissect 

spliceosome dynamics
5,6,10

. The spliceosome is a multi-megadalton ribonucleoprotein 

(RNP) complex essential for the faithful removal of introns from eukaryotic precursor 

messenger RNAs (pre-mRNAs) during the two chemical steps of splicing (Fig. 1a)
11

. The 

architectural reorganization of the pre-mRNA substrate required to accommodate these two 

catalytic steps in a single active site are thought to be accompanied by substantial 

rearrangements that ensure substrate proofreading
12–15

. To explore these rearrangements, we 

have labeled the efficiently splicing yeast pre-mRNA Ubc4
6,16

 with the FRET pair Cy5 and 

Cy3 seven nucleotides upstream of the 5′ splice site (5’SS) and six nucleotides downstream 

of the branch point (BP), respectively. This approach yields a substrate capable of detecting 

changes in intron conformation as a result of 5’SS and BP (un)docking (Fig. 1a, b) that we 

previously used to show that one of several DExD/H-box ATPases, Prp2, unlocks intrinsic 

conformational dynamics in the isolated spliceosomal Bact complex, setting the stage for 

first-step catalysis through a biased Brownian ratcheting mechanism
5
.

Despite years of utilization, the quantitative methods available for an in-depth dissection of 

the dynamics observed in smFRET studies are still limited. In particular, the multi-state, 

mostly asynchronous and often heterogeneous kinetics of many molecular machines, such as 

the spliceosome, render the current state-of-the-art analysis of individual state transitions as 

independent stochastic events insufficient for an in-depth understanding of the underlying 

biological function. To extract additional information, several recent studies have analyzed 

common smFRET metrics more thoroughly, specifically FRET probability histograms and 

state-to-state transition kinetics
7
. For example, it has been demonstrated that in certain 

favorable cases interstate dynamics can be extracted from histograms through an analysis of 

photon arrival times and lifetimes
17

. In addition, state-to-state transition kinetics have been 

extracted utilizing clustering algorithms to identify distinct kinetic behaviors
18,19

. All of 

these approaches have focused on small datasets with 2–3 FRET states and limited 

dynamics. Unfortunately, they are limited when more complex systems with multiple states 

and complex kinetic networks are examined under non-equilibrium conditions.

We present here a method that utilizes hierarchical clustering as a means to group, sort, and 

identify commonalities of smFRET trajectories fit using Hidden Markov Modeling (HMM, 

Fig. 1c, d). We termed this tool Single Molecule Cluster Analysis (SiMCAn) and used it to 

characterize the pre-mRNA dynamics associated with the assembly and catalytic steps of the 

yeast spliceosome. SiMCAn reduces every single molecule trajectory, regardless of its 

number of states, to an easily comparable unit of information that we coin the FRET 

Similarity Matrix (FSM). By leveraging hierarchical clustering techniques, we identified 

common dynamic behaviors across 10,680 different Ubc4 pre-mRNA molecules. 

Importantly, we accomplished an unbiased, model-free identification of commonalities and 

differences between splicing complexes through a second level of clustering based on the 

abundance of dynamic behaviors exhibited by defined functional intermediates. Applying 

SiMCAn thus allowed us to efficiently assign pre-mRNA FRET states and transitions to 
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specific splicing complexes, including a heretofore undescribed low-FRET conformation 

adopted late in splicing by a 3′ splice site mutant. These results establish SiMCAn as an 

effective bioinformatics tool to characterize complex smFRET behavior of dynamic cellular 

machines.

Results

Hierarchical clustering of complex smFRET behaviors

State-to-state transitions in single molecule trajectories report on the accessibility of 

conformational states and their ability to interconvert. HMMs are the most commonly 

utilized tools for identifying state-to-state transitions in smFRET trajectories (Fig. 1c, d). 

HMM fits create challenges, however, when comparing trajectories with different states and 

kinetic properties across a variety of experimental conditions (Supplementary Note 1). 

These challenges can be addressed by fitting all data with a single HMM model so that 

consistent state values are used across all trajectories
6,7. Such an approach effectively 

imposes a single, preordained kinetic model on all molecules and experimental conditions, 

which may not be appropriate for highly complex systems such as the spliceosome.

SiMCAn introduces a solution for sorting and identifying commonalities among large 

numbers of HMM-fitted smFRET trajectories by first binning each FRET state into one of 

ten evenly spaced FRET values (0.05–0.95, with increments of 0.10) (Fig. 2a). This binning 

enables the direct comparison across a large dataset with FRET values that together evenly 

span the viable FRET range and are commensurate with typical signal-to-noise ratios. The 

resulting HMMs are used to construct transition probability (TP) matrices that describe the 

FRET states as well as the kinetics of transition between them (Fig. 2a). Each TP matrix is 

then combined with the occupancies of the individual FRET states to create an FSM (Fig. 

2a). The Euclidean (ordinary) distance between FSM provides a suitable weighted, 

information-rich metric by which to compare thousands of HMM-fitted smFRET trajectories 

using hierarchical clustering analysis (Supplementary Note 1), an agglomerative clustering 

technique that aims to group data of similar characteristics without the need for a 

preconceived experimental model or hypothesis
20,21

 (Online Methods). The result of this 

clustering is a hierarchical tree, where each leaf on the tree represents the dynamics of an 

individual molecule, while branch points indicate a split in dynamic behavior of the group of 

molecules at a given level of coarseness (Fig. 2b). The number of clusters is determined 

using an iterative measurement of the inter-cluster distances and a modified k-means 

algorithm
22

. Henceforth, each cluster will be represented using the average TP matrix, a 

random collection of traces, and the probability distribution of FRET states within the 

cluster (Fig. 2c).

Validation of SiMCAn using simulated datasets

To evaluate whether SiMCAn is able to correctly identify and segregate HMM-fitted 

trajectories with known FRET states, we applied it first to a simulated dataset containing 

1,500 trajectories that reversibly transition from a 0.15 to a 0.45 FRET state and an equal 

number of trajectories that transition from the same 0.15 FRET state to a 0.85 state instead 

(Supplementary Fig. 1a), with average rate constants of k0.15→0.45 = 0.54 s−1, k0.45→0.15 = 
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0.54 s−1 and k0.15→0.85 = 0.54 s−1, k0.85→0.15 = 0.54 s−1, respectively. Utilizing the inter-

cluster distances and modified k-means algorithm, SiMCAn properly identified and 

separated these two molecular behaviors (Supplementary Fig. 1b), demonstrating that 

FSMs can be clustered and distinguished based on the identity of their FRET states. A 

second and more important feature of SiMCAn is the ability to segregate HMMs based on 

differing kinetics. We analyzed a second set of 3,000 simulated HMMs possessing two 

FRET states of 0.15 and 0.75, with half designed to have identical interconversion rate 

constants of 0.54 s−1, whereas the other half transitioned much more slowly with rate 

constants of 0.15 s−1 (Supplementary Fig. 1c). SiMCAn identified two clusters with 

distinct transition rate constants between the two states (Supplementary Fig. 1d). These 

results demonstrate SiMCAn’s ability to differentiate HMM-fitted FRET trajectories based 

on their FRET states and kinetics.

Validation of SiMCAn using purified spliceosomal complexes

To benchmark SiMCAn against a more complex experimental dataset featuring multiple 

FRET states, numerous rate constants of transition, and the inherent experimental limitations 

(e.g., signal noise and premature photobleaching), we chose to analyze a previously 

published dataset collected during the Prp2-mediated conformational transition immediately 

prior to the first step of splicing
5
. Briefly, the immobilized Bact complex containing FRET-

labeled Ubc4 was monitored as it progresses through the B* to the C complex upon addition 

of recombinant proteins Prp2, Spp2 and Cwc25 (Fig. 3a). Only upon exhaustive manual 

sorting were we able to identify distinct FRET state and kinetic signatures for the 

intermediate Bact, B* and C complexes (Supplementary Fig. 2a). Notably, SiMCAn was 

able to rapidly (within minutes) and correctly identify these previously only manually 

identified (Supplementary Fig. 2b)
5
 sub-populations of pre-mRNA molecules.

To this end, the HMM-fitted FRET traces under Bact, B*, and C complex conditions were 

combined and analyzed using SiMCAn to determine if the analysis could recapitulate the 

manual annotation of these traces. Maximizing the inter-cluster distances while minimizing 

the intra-cluster distances using SiMCAn revealed 9 dynamic and 4 static clusters as best 

fitting the data (Fig. 3b and Supplementary Fig. 3). These clusters were combined into a 

single bar graph to depict the fraction of molecules that occupy each cluster, allowing for the 

identification of clusters most populated under each experimental condition (Fig. 3c). 

Reproducing our previous analysis, a cluster of molecules adopting a static low-FRET state 

(0.3-S) was identified as dominant under Bact conditions (Fig. 3c), whereas a static high-

FRET cluster (0.7-S) was most abundant under C complex conditions (Fig. 3c). In addition, 

SiMCAn identified two dynamic clusters increasingly populated under B* (cluster 0.43, 

green) and C (cluster 0.66, red) complex conditions (Fig. 3c). Cluster 0.43 contains 

molecules with a short-lived high-FRET state and longer dwell times in the low-FRET state 

that are most abundant under B* conditions (Fig 3d). By contrast, cluster 0.66 contains 

molecules with a longer-lived high-FRET state featuring rapid excursions back to a mid-

FRET state that are enriched upon addition of Cwc25 to form the C complex (Fig. 3e), 

matching our previous manual analysis
5
. These results demonstrate that, when applied to a 

complex experimental dataset, SiMCAn is able to segregate the data efficiently based on 
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FRET states and differences in state-to-state interconversion kinetics to derive a biologically 

meaningful result.

Stalling of the spliceosome leads to distinct behaviors

Having established that SiMCAn identifies known dynamic behaviors in simulated 

(Supplementary Fig. 1) and experimental, HMM-fitted smFRET trajectories (Fig. 3), we 

next utilized it on a new dataset enriched for specific stages of splicing through the use of 

biochemical and genetic stalls for which no previous behaviors are known. smFRET data 

were collected upon incubation of FRET-labeled wild-type (WT) Ubc4 pre-mRNA with WT 

yeast whole cell extract (WT-WCE), allowing for spliceosomal assembly on and splicing of 

the fluorescent substrate (condition WT-WCE(WT), Fig. 1a). Time courses were performed 

during which smFRET was recorded within time windows 0–8 min (early), 18–23 min 

(middle) and 33–40 min (late) after addition of WCE. To assign dynamics to particular 

splicing intermediates without a need for cumbersome biochemical isolation, we chose to 

utilize eight mutations, and combinations thereof, known to allow for efficient accumulation 

of specific splicing intermediates in WCE (Fig. 1a and Supplementary Table 1). Blockage 

and release by reconstitution were verified by bulk in vitro splicing assays in yeast WCE 

(Supplementary Fig. 4). smFRET data for each stall were then acquired using the same 

time lapse approach utilized for the WT-WCE(WT) condition. FRET probability 

distributions and Transition Occupancy Density Plots (TODPs) (Supplementary Fig. 5 and 

Supplementary Fig. 6) were utilized to broadly summarize the behavior of hundreds of 

molecule trajectories per condition
7
, confirming that the blocks lead to different ensemble 

and time averaged behaviors. However, this far more complex dataset is not amenable to 

standard analysis techniques as it includes a large number of traces, FRET states, and 

transition rate constants from splicing complexes stalled by mutation throughout the splicing 

cycle. As such, it represents an ideal application for SiMCAn.

Identifying biologically defined dynamics using SiMCAn

Application of SiMCAn to this new dataset allowed us to identify and cluster sets of 

molecules that share common dynamic behaviors. Each of the 10,680 smFRET trajectories 

was first fit with a HMM using vbFRET
23

, although any HMM fitting tool can be utilized 

that satisfies the user’s fitting preferences. Prior to clustering, 4,601 static molecules were 

identified and analyzed separately. Hierarchical clustering of the remaining 6,079 dynamic 

molecules produced a tree that was pruned to a height of 25 distinct clusters (Fig. 2b, 

Supplementary Fig. 7), so that each cluster represented a unique dynamic behavior (Fig. 

2c, Supplementary Fig. 8). Static clusters were named by their sole FRET state (e.g., 0.05-

S), whereas dynamic cluster names were assigned based on the first and second most 

occupied FRET states within the cluster (e.g., cluster 0.65–0.05 primarily occupies 0.65 and 

0.05 FRET states). Bootstrap analysis based on the 25 SiMCAn identified clusters confirmed 

the ability to identify input HMMs from increasingly complex datasets, and that the 

SiMCAn-identified clusters for the large experimental dataset capture the molecular 

behavior exhaustively. (Supplementary Fig. 9a–b).

We next sought to identify clusters whose occupancies are similarly enriched or depleted for 

the same group of conditions, i.e., follow a similar pattern of high and low occupancies 
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across conditions, suggesting they can be grouped into a ‘clade’ through a second round of 

hierarchical clustering (Fig. 4a). Upon application of this second level of SiMCAn to the full 

dataset, a tree height of seven clades (Supplementary Fig. 10) allowed for the identification 

of clusters representative of particular splicing conditions, thus most naturally capturing the 

changes in dynamic behavior expected to occur as the pre-mRNA progresses through the 

splicing cycle (Fig. 4b and Supplementary Fig. 11). A bar graph of all 35 (25 dynamic plus 

10 static) clusters was also constructed, revealing the extent to which each cluster 

contributes to the overall dynamics for each condition (Fig. 5 and Supplementary Figs. 12, 
13). Statistical analysis found that the average length of molecules within each cluster was 

similar, indicating that SiMCAn does not segregate by trace length (Supplementary Fig. 14 
and Supplementary Table 2).

Characterization of pre- and post-first step blocks

Application of SiMCAn revealed a disperse set of dynamics and cluster occupancies in the 

early splicing conditions ΔATP-WCE(WT) and ΔU6-WCE(WT) that stall at the 

Commitment Complex 2 (CC2) and A complexes, respectively (Supplementary Fig. 13). 

Interestingly, SiMCAn identified a time-dependent increase in clade I upon A complex 

formation (Supplementary Note 2). This low-FRET behavior has been proposed to be 

sustained upon incorporation of the U5·U4/U6 tri-snRNP during B complex formation
10 

(Fig. 1). In our corresponding ΔPrp2-WCE(WT) and ΔPrp2-WCE(3SS) datasets, conditions 

known to enrich the activated spliceosome Bact24,25, SiMCAn recognized a pair of static 

clusters, 0.25-S and 0.15-S, found to be overrepresented and thus grouped to form clade II 

(Figs. 4 and 5). These clusters represent molecules that are stalled in a static low-FRET Bact 

conformation prior to activation of Prp2’s ATPase activity and are similar to those 

previously determined
5
 using the isolated Bact complex lacking free extract (Fig. 3). 

Notably, SiMCAn was able to distinguish these clusters from the equally static, but even 

lower FRET cluster 0.05-S of the A complex, which is not resolvable in the FRET 

histograms (Supplementary Fig. 5). In addition to the static clusters of clade II, the 

dynamic cluster 0.05–0.25 (Supplementary Fig. 15a) is moderately enriched in these 

conditions relative to other conditions, suggesting that occasional excursions back into an A 

or B-like conformation occur.

In contrast to Prp2 depletion, SiMCAn identified clade VII as particularly enriched upon 

addition of recombinant Prp16 dominant negative mutant ATPase (Prp16DN-WCE(WT) and 

Prp16DN-WCE(WT)), known to stall splicing within the post-first-step C complex
5,26,27 

(Figs. 4–5 and Supplementary Fig. 15b). Within this clade were a static cluster 0.85-S and 

three dynamic clusters, all containing the 0.85 FRET state (Fig. 6), which is distinct from the 

0.75-S/0.65-S conformational state of clade VI enriched in early splicing intermediates 

(Supplementary Fig. 13). The dynamics of the clusters enriched at the Prp16DN stage 

indicate a preference for the 0.85 high-FRET state (Fig. 6b), suggesting we are enriching for 

and identifying molecules just before catalysis or transiently sampling the first catalytic 

conformation before proceeding to the 0.85-S cluster characteristic of molecules that have 

undergone first-step splicing. Although the ΔPrp2-WCE(3’SS) stall did show a delay in Bact 

complex formation (Supplementary Note 3), these observations suggest that only faithful 
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spliceosome assembly leads to juxtaposition of the 5’SS and BP in a stable fashion, thus 

favoring first-step catalysis independent of the identity of the 3’SS
28

.

A 3’SS mutant undocks late in spliceosome assembly

Finally, SiMCAn identified differences in smFRET behavior between the WT and 3’SS 

mutant substrates upon incubation with WT WCE containing no blocks (WT-WCE(WT) and 

WT-WCE(3’SS)), thus allowing for the unabated assembly towards the final step of splicing. 

The 3’SS mutant is known to assemble in a complex that includes the splicing factors 

responsible for the second step of catalysis, yet the 3’SS mutant is not amenable to splicing 

(Supplementary Fig. 4). Since both substrates progress through most of the splicing cycle, 

it is not surprising that SiMCAn revealed a similar set of pre-mRNA conformations sampled 

(Fig. 5). However, the 3’SS over time adopted an increasingly dominant 0.05-S cluster (Fig. 

5, clade I), indicating a large separation of the 5’SS and BP not found in the Prp16DN-

WCE(3’SS) dataset. This 0.05-S state is thus stabilized to a much greater extent in the 3’SS 

mutant than the WT substrate, supporting the appearance of a conformation in which the 

5’SS and BP become greatly separated only after the first step of splicing when the mutated 

3’SS is detected. Our data suggest that the 3’SS is either unable to dock into the catalytic 

core or is unable to remain docked in the catalytic core after the ATP-dependent action of 

Prp16. This deficiency in docking may be a result of second-step factors preventing docking 

into the second-step conformation
29,30

. Alternatively, this open conformation may be caused 

by Prp22, an ATPase known to be involved in proofreading mutant substrates during the 

second step of splicing (Supplementary Note 4)
13,31

 Taken together, our SiMCAn analysis 

generates the hypothesis that the lack of a proper 3’SS sequence marker leads to robust 

proofreading against a substrate not kinetically competent for the second step of splicing by 

undocking from the active site.

Discussion

We here have demonstrated the power of Single Molecule Cluster Analysis (SiMCAn) to 

reveal unique dynamic properties associated with specific splicing cycle intermediates that 

could not be identified using classical smFRET analysis (Supplementary Figs. 5, 6). Since 

SiMCAn does not make assumptions about the heterogeneity or completeness of the 

underlying biochemical reactions, it allows one to identify consistent molecular behaviors in 

model-free fashion (Supplementary Note 1). Through such unbiased and thorough analysis, 

we were able to assign dynamic FRET states to specific complexes, identify molecules 

transitioning between complexes, and demonstrate that the 5’SS and BP undock completely 

after the first step of splicing when the spliceosome encounters a 3’SS mutation (Fig. 5). 

SiMCAn thus can use exploratory datasets collected from complex reaction pathways to 

generate testable hypotheses, for example, that the spliceosome exploits similar undocked 

intermediates to proofread substrates along the splicing cycle, providing checkpoints that 

trap suboptimal substrates not meeting the criteria for cycle progression.

Single molecule FRET experiments provide a unique perspective into the dynamic behavior 

of complex reactions like splicing. Our experiments revealed a complex set of dynamic 

behaviors throughout the splicing cycle. SiMCAn was born of the necessity to classify 
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common kinetic behaviors over a broad range of experimental states. Building hierarchical 

trees from disparate sets of data is the basis of most phylogenetic inference, and the methods 

presented here are inspired from evolutionary analysis
32

. The clades identified by SiMCAn 

allow us to define common subsets of relative dynamic behavior occurring at different 

biochemical blocks of the splicing cycle. Building on the phylogenetic analogy, the dynamic 

clades identified represent common kinetic pathways traversing the splicing cycle. We thus 

observed conserved pathways in the splicing cycle driven by a limited number of transitions. 

A limitation of investigating complex systems, such as the spliceosome, is that it does not 

allow us to unambiguously define conformations from FRET states. In a simpler system, like 

the P4-P6 subdomain of the T. thermophila group I intron, docking/undocking of the GNRA 

tetraloop could be assigned to specific FRET values, which enabled an unambiguous kinetic 

model to be developed
19

. Emerging approaches involving multiple probes such as the 

coincidence analysis of colocalization single-molecule spectroscopy (CoSMoS)
33

, combined 

with SiMCAn, are poised to resolve this ambiguity and facilitate the development of a 

complete kinetic model of the eukaryotic splicing cycle. Furthermore, as point detector-

mediated photon counting becomes more high-throughput, these methods should introduce a 

substantial improvement in time resolution and allow a detailed description of shot-noise 

limited FRET efficiency distributions
17

. As single molecule techniques are applied to 

increasingly complex biochemical processes, SiMCAn is an approach that will make it 

possible to no longer limit the experimental strategy to one with a low number of states 

while still seeing the forest for the trees.

In summary, our results demonstrate that SiMCAn vastly improves the amount of 

information possible to extract from a large quantity of complex smFRET data. It is a 

powerful tool for the unbiased extraction of FRET states and kinetics from single molecule 

trajectories. By combining Hidden Markov Models with hierarchical clustering, we have 

utilized the strengths of both techniques to allow for the identification of biologically related 

dynamics. Beyond the identification of FRET states, SiMCAn helps distinguish molecules 

with similar FRET levels but differing rates of interconversion. By applying an additional 

layer of clustering based on the occupancy of behaviors across a systematic set of 

experimental conditions with known effects, we have created a tool for the identification of 

common and distinct behaviors among large numbers of single molecules. As such, 

SiMCAn can help generate hypotheses that drive focused experiments on isolated pathway 

intermediates. We anticipate that SiMCAn will be a powerful analysis tool that can be 

applied to any single molecule dataset, allowing for unprecedented in-depth analyses of the 

dynamics of complex biomolecular machines.

Online Methods

Synthesis of pre-mRNA substrates

The Ubc4 pre-mRNA substrates used in this study (Supplementary Table 3) were 

synthesized as previously described
6
. Briefly, the 135-nucleotide pre-mRNA was ligated 

from two fragments: a 59-nucleotide 3′ segment with 5-amino-allyl-uridine at the +6 

position relative to the BP adenosine and a 76-nucleotide 5′ segment with 5-amino-allyl-

uridine at the −7 position relative to the 5’SS. The 3’SS mutant had the guanines at positions 
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115 and 117 on the 3′ segment replaced with cytosines. The 5′ and 3′ fragments were 

coupled to Cy5 and Cy3 N-hydroxysuccinimidyl ester (GE Healthcare), respectively, by 

resuspending 4 nanomoles of RNA in 40 μl of 0.1 M sodium bicarbonate buffer, pH 9.0, and 

incubating for 30 min at 60 °C with the proper dye pack dissolved in DMSO. The 

conjugated fragments were ethanol precipitated and washed with 70% (v/v) ethanol to 

remove unconjugated dye. Unlabeled RNA was removed by purification on benzoylated 

naphthoylated DEAE (BND)-cellulose (Sigma) that was washed with 1 M NaCl containing 

5% (v/v) ethanol. Fully labeled RNA fragments were eluted with 1.5 M NaCl containing 

20% (v/v) ethanol and further precipitated to remove excess salt. Labeled fragments were 

combined with an equal molar amount of DNA splint (Supplementary Table 3) and ligated 

by incubating with RNA Ligase 1 (NEB) for 4 h at 37 °C as described
6,16

. Full length, 

labeled Ubc4 was then purified on a denaturing 7 M urea, 15% (w/v) polyacrylamide gel.

Preparation of yeast whole cell extract

Splicing active whole cell extract (WCE) was prepared from either yeast strain BJ2168 or a 

prp2-1 cef1-TAP yeast strain (ATCC 201388: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) as 

previously described
6,34

. Briefly, cells were grown in YPD medium to an OD600 of 1.6–2.0 

before they were harvested and washed in AGK buffer (10 mM HEPES-KOH, pH 7.9, 1.5 

mM MgCl2, 200 mM KCl, 10% (v/v) glycerol, 0.5 mM DTT, 0.6 mM PMSF, and 1.5 mM 

benzamidine). A thick slurry of cells was dripped into liquid nitrogen to form small cell 

pellets that could be stored at −80 °C. The frozen pellets were disrupted by manual grinding 

with a mortar and pestle half-submerged in liquid nitrogen for 30 min. The resulting frozen 

powder was thawed in an ice bath and centrifuged at 17,000 rpm in a type 45 Ti Beckman 

rotor. The supernatant was then centrifuged at 37,000 rpm in a Ti-70 rotor for 1 h. The clear 

middle layer was removed with a syringe and dialyzed for 4 h against 20 mM HEPES-KOH, 

pH 7.9, 0.2 mM EDTA, 0.5 mM DTT, 50 mM KCL, 20% (v/v) glycerol, 0.1 mM PMSF, and 

0.25 mM benzamidine with one buffer exchange.

Accumulation of Splicing Complexes

Supplementary Table 1 describes all experimental conditions by identifying the substrate 

and WCE used along with the complex formed. All splicing products were confirmed via in 
vitro splicing assays by incubating 4 nM fluorescent Ubc4 in splicing buffer (8 mM HEPES-

KOH, pH 7.0, 2 mM MgCl2, 0.08 mM EDTA, 60 mM Ki(PO4), 20 mM KCl, 8% (v/v) 

glycerol, 3% (w/v) PEG, 0.5 mM DTT) and 40% (v/v) WCE at 25 °C for 40 min. Products 

were analyzed by separation on a 7 M urea, 15% (w/v) polyacrylamide gel and scanned on a 

Typhoon variable mode imager (GE Healthcare, Supplementary Fig. 4). ATP depletion was 

performed by pre-incubating WCE with 1 mM glucose at 25 °C for 10 min prior to 

incubation with splicing buffer and substrate. Endogenous U6 snRNA was depleted by pre-

incubation of WCE with 300 nM D1 oligodeoxynucleotide (Supplementary Table 3) in 

splicing buffer, 50% (v/v) WCE, and 2 mM ATP at 33 °C for 30 min prior to incubation with 

substrate. Knockdown of endogenous Prp2 was performed by heating prp2-1 cef1-TAP 
WCE to 37 °C for 40 min prior to incubation with splicing buffer, ATP, and pre-mRNA 

substrate. Endogenous Prp16 was inactivated using 100 nM of a Prp16 dominant-negative 

mutant (Prp16DN; K379A) added to the BJ2168 WCE for 10 min prior to incubation with 

splicing buffer, 2 mM ATP, and pre-mRNA substrate. On-slide splicing assays were 
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performed as the in vitro splicing assays with the exception that all materials were combined 

prior to flowing reaction mixtures onto a substrate-coated, PEG-passivated slide using 

established procedures
5,6.

Single Molecule FRET

Single Molecule FRET was carried out in the same manner as previously described
5,6. Using 

a prism-based TIRF microscope
8,35,36

, we collected data from single molecules incubated 

under the desired conditions (Supplementary Table 1). Data were collected from two to 

three fields of view for each time period of 0–8 min (early), 18–23 min (middle), and 33–40 

min (late) after addition of WCE. The donor (Cy3) near the BS adenosine was excited with a 

532 nm laser for 100 seconds, followed by a direct excitation of the Cy5 acceptor near the 

5’SS with a 635 nm laser for another 100 seconds, with the resulting emission recorded at 

100 ms time resolution with a Princeton Instruments, I-PentaMAX intensified CCD camera. 

Molecules selected for further analysis by SiMCAn were required to last longer than 3 

seconds before photobleaching of Cy3, show anti-correlated changes in Cy3 and Cy5 

intensity, undergo single-step photobleaching, and still contain active Cy5 fluorophore at the 

time of its direct excitation. The FRET ratio was calculated by dividing the intensity of the 

acceptor emission by the total emission from both donor and acceptor. Each individual 

FRET trace was fitted with an individual Hidden Markov Model (HMM) with up to 10 states 

using vbFRET
23

 in Mathwork’s MATLAB environment with no assumptions about the 

values or distributions; in principle, any HMM-fitted trajectories can be used (generated by 

vbFRET, HaMMy, QuB, etc.)
7
. Regardless of the HMM software utilized, a certain degree 

of uncertainty in the number of FRET states and transitions among those states will be 

present in the data due to the noise associated with smFRET analysis. However, an 

improvement of HMM analysis techniques is not the focus of this manuscript.

Single molecule Cluster Analysis – SiMCAn

The HMM-idealized data were assigned to the closest of 10 evenly spaced FRET states 

(0.05–0.95, increment of 0.10 as our resolution limit). Traces of less than 3 s (30 frames) 

length were discarded and a transition probability (TP) matrix was constructed for each of 

the remaining molecule traces. Each TP matrix was then combined with the vector 

describing the percent of the trace that occupies each FRET state to create a FRET similarity 

matrix (FSM) where FSM[i,j] = [TP[i−1,j],P[n,j]] where i is from 1 to n+1 and j is from 1 to 

n. The FSMs were divided into categories containing static traces and dynamic traces, the 

dynamic traces identified and characterized by having at least one FRET transition between 

two FRET states. Static traces were identified automatically based on their unique signature 

with just a single FRET value and kept separate for the remaining analysis. Static molecules 

could arise due to fluorophores photobleaching prior to a transition taking place. 

Alternatively, formation of a particular complex may lead to a very stable, unchanging 

conformation that results in a single (static) FRET state. The FSMs corresponding to 

dynamic traces were used as input for a hierarchical clustering analysis performed by 

MATLAB that calculates the distance between FSMs using the Euclidean (ordinary) 

distance. The resulting hierarchical tree was then used to identify clusters of traces with 

similar behavior as identified from their FSM. The tree was pruned at a height that resulted 

in 25 dynamic clusters in addition to 10 static clusters as assigned by their FRET state. The 
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height used to determine the clusters in the hierarchical tree was determined using an 

iterative measurement of the inter-cluster distances and a modified k-means algorithm. The 

specific cut-off was chosen at the first point where randomly assigned traces had a higher 

inter-cluster distance than the hierarchical clustering, which provided the best option among 

several for determining an optimal cluster selection. The resulting clusters were analyzed 

and labeled according to their occupancy in the FRET states. All analysis and descriptions of 

the clusters were performed using MATLAB. For each experimental condition, the fraction 

of molecules within each SiMCAn identified cluster was computed by dividing the number 

of molecules of that condition assigned to each cluster by the total number of molecules in 

that condition. The occupancy within all the clusters was used as a new similarity matrix to 

compute the distance between each SiMCAn cluster using Euclidean distance measurement. 

Clades were generated by the iterative k-means approach used in SiMCAn, with the aim to 

generate groups of clusters whose occupancy patterns across conditions are most alike (as 

measured by Euclidean distance).

Generation of the Simulated Datasets

Artificial HMMs containing the distinctions of interest were used to generate traces of 106 

time step length for each of four clusters. These traces were used to generate 1,500 subtraces 

where the starting points were uniformly selected along the full trace and the length 

determined by a Poisson distribution with a lambda of 100. The resulting traces were treated 

exactly like experimentally acquired data fit by vbFRET for analysis by SiMCAn.

Code availability

Custom MATLAB code for SiMCAn analysis and figure generation is available upon 

request.
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Figure 1. 
smFRET analysis of pre-mRNA splicing using the hidden Markov model. (a) The 

fluorescent substrate used to monitor pre-mRNA dynamics contains Cy5 and Cy3 

fluorophores seven nucleotides upstream of the 5’SS and six nucleotides downstream of the 

BP, respectively. The spliceosome assembly and catalysis pathway is thought to progress in a 

stepwise manner requiring ATP at several steps of assembly. The biochemical and genetic 

stalls utilized in this study are indicated by red blocks. (b) Prism-based TIRFM setup for 

smFRET. (c) Raw single molecule time trace showing the anti-correlated donor (green) and 

acceptor (red) intensities. (d) The corresponding FRET trace (magenta) and the HMM trace 

as assigned by vbFRET (black).
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Figure 2. 
Workflow of SiMCAn to sort and cluster single-molecule derived HMMs for common 

dynamic behaviors. (a) Assigned FRET trace before (black) and after (blue) reassignment to 

the closest of 10 evenly spaced states (0.05–0.95, increment of 0.10, gray dashed lines). 

Transition probability (TP) matrix corresponding to the re-binned FRET trace in left panel 

and occupancy values for each of the ten FRET values for the molecule in left panel. FRET 

Similarity Matrix (FSM), which contains the transition probability (TP) matrix and FRET 

occupancies that describe the FRET states and transition kinetics between them for the 

molecule in panel a. (b) Hierarchical tree as a result of hierarchical clustering analysis using 

all 6,079 dynamic molecules. Each colored branch describes a set of molecules that shares 

common FRET transition probabilities. The dashed line indicates the threshold of 25 clusters 

used to describe the data. Static molecules were identified and analyzed by SiMCAn 

separately. (c) Cluster description for two of the 25 dynamic clusters of the full splicing 

dataset. Each representation shows the TP matrix of the cluster, the trace closest to the 

cluster center (magenta) and up to 200 s of random (black) traces from the cluster, and the 

probability of FRET states within the cluster. The highlighted blue trace in the top right 

panel indicates the example trace used in panel a. Grey and white backgrounds demarcate 

individual trajectories in (c).
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Figure 3. 
Validation of SiMCAn using a previously analyzed dataset describing the transition from the 

purified Bact to the C complex
5
. (a) Protein requirements for the transition from the Bact 

complex through B* to the C complex. (b) Hierarchical tree based on hierarchical clustering 

analysis of the dynamic molecules re-fit with FRET states of 0.1, 0.3, 0.5, and 0.7
5
. Static 

molecules were identified and analyzed by SiMCAn separately. (c) Cluster occupancy bar 

graph showing the fraction of molecules from each experimental condition that occupy the 

nine dynamic and four static clusters found using SiMCAn. Dynamic clusters were labeled 

by the weighted average FRET value of the molecules within the cluster (e.g., 0.2563) while 

static clusters are labeled by the single state they describe (e.g., 0.1-S). Grey bars highlight 
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the most populated clusters occupied by each of the complexes. (d and e) Dynamic clusters 

enriched in the B* (d, cluster 0.4267) and C (e, cluster 0.6478) complexes. Each 

representative for the B* and C complex shows the TP matrix of the cluster (left), the closest 

(magenta) and several random (black) traces from the cluster (middle), and the probability of 

FRET states within the cluster (right).

Blanco et al. Page 17

Nat Methods. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Clustering of clusters to identify ‘clades’ of similar behavior. (a) Illustration of the second 

round of clustering to group the clusters by common occupancy patterns. In this example, 

six clusters (Y-axis, 1–6) have been populated by six conditions (X-axis, A–F). Each cluster 

has an occupancy pattern across the conditions as represented by a heat map, with high 

occupancy shown in blue and low occupancy shown in orange. By applying a second round 

of SiMCAn clustering, clusters with similar occupancies across the six conditions become 

grouped to form a clade (labeled I–IV). (b) Performing the second round of clustering with 

the 35 clusters from our experimental splicing dataset reveals 7 clades (labeled I–VII) of 

clusters enriched in particular splicing complexes. The fraction of molecules within each 

cluster for each experimental condition at each time was normalized to a mean of zero with 

unit variance. Green and blue colors indicate increased occupancy of a particular cluster 

while orange indicates decreased occupancy. Rows identify the clusters and are ordered by 
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increasing average FRET of the clade. Columns identify the cluster occupancy of each 

condition for the early, middle, and late time points.
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Figure 5. 
Cluster occupancy histogram showing the raw fraction of molecules occupying each cluster 

for the late assembly stages of the splicing cycle. Alternating gray and white backgrounds 

demarcate the clusters (bottom) comprising each of the 7 clades (top). Clusters of occupancy 

characteristic of a specified condition are highlighted in yellow.
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Figure 6. 
Dynamic clusters of clade VII enriched in the Prp16DN-WCE conditions show repeated 

excursions from the 0.85 state to lower FRET states. (a) Fraction of molecules within each 

late assembly stage for the clusters of clade VII. (b) Cluster description for each of the four 

clusters within clade VII. Each representation shows the TP matrix of the cluster (left), the 

trace closest to the cluster center (magenta) and up to 200 s of random (black) traces from 

the cluster (middle), and the probability of FRET states within the cluster (right). Grey and 

white backgrounds demarcate individual trajectories.
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