12 research outputs found

    Static and Dynamic Photovoltaic Cell/Module Parameters Identification

    Get PDF
    The accurate parameters extraction is an important step to obtain a robust PV outputs forecasting for static or dynamic modes. For these aims, several approaches have been proposed for photovoltaic (PV) cell modeling including electrical circuit-based model, empirical models, and non-parametrical models. Moreover, numerous parameter extraction methods have been introduced in the literature depending on the proposed model and the operating mode. These methods can be classified into two main approaches including automatic numerical and analytical approaches. These approaches are commonly applied in the static mode, whereas they can be employed for dynamic parameters extraction. In this chapter, as a first stage, the static parameters extraction for both single and double diodes models is exposed wherein Genetic Algorithm and outdoor measurements are considered for fixed irradiation and temperature. In the second stage, a dynamic parameters extraction is carried out using Levenberg-Marquardt algorithm, where 1 day profile outdoor measurement is considered. After that, the robustness of the proposed approaches is evaluated and the parameters obtained by the static method and that given by the dynamic technique are compared. The test is carried out using 3 days with different weather conditions profiles. The obtained results show that the parameters extraction by dynamic techniques gives satisfactory performances in terms of agreement with the real data

    Robust design optimization and stochastic performance analysis of a grid-connected photovoltaic system with battery storage and hydrogen storage

    No full text
    Balancing of intermittent energy such as solar energy can be achieved by batteries and hydrogen-based storage. However, combining these systems received limited attention in a grid-connected framework and its design optimization is often performed assuming fixed parameters. Hence, such optimization induces designs highly sensitive to real-world uncertainties, resulting in a drastic mismatch between simulated and actual performances. To fill the research gap on design optimization of grid-connected, hydrogen-based renewable energy systems, we performed a computationally efficient robust design optimization under different scenarios and compared the stochastic performance based on the corresponding cumulative density functions. This paper provides the optimized stochastic designs and the advantage of each design based on the financial flexibility of the system owner. The results illustrate that the economically preferred solution is a photovoltaic array when the self-sufficiency ratio is irrelevant (%). When a higher self-sufficiency ratio threshold is of interest, i.e. up to 59%, photovoltaic-battery designs and photovoltaic-battery-hydrogen designs provide the cost-competitive alternatives which are least-sensitive to real-world uncertainty. Conclusively, including storage systems improves the probability of attaining an affordable levelized cost of electricity over the system lifetime. Future work will focus on the integration of the heat demand
    corecore