76 research outputs found

    Novel foods and food ingredients: what is the mission of scientists and technologists?

    Get PDF
    The situation concerning world food production is changing dramatically. On the one hand, the world population is expected to grow still further, reaching about 8 billion peo- ple in the middle of the 21st century. Novel phenomena, such as ageing of the human population and excess weight in developing countries pose new nutrition problems. Food scares, which were enhanced by recent BSE and tox- icological outbreaks, hinder the applicability of some solu- tions. Under these conditions, scientists and technologists should participate actively in the tasks of informing the population as well as finding new ways to provide people with the optimal amount of nutritious food.(undefined

    Metallothionein Expression in Chloroplasts Enhances Mercury Accumulation and Phytoremediation Capability

    Get PDF
    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 ÎĽm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation

    Expression in grasses of multiple transgenes for degradation of munitions compounds on live fire training ranges

    Get PDF
    The deposition of toxic munitions compounds, such as hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), on soils around targets in live-fire training ranges is an important source of groundwater contamination. Plants take up RDX but do not significantly degrade it. Reported here is the transformation of two perennial grass species, switchgrass (Panicum virgatum) and creeping bentgrass (Agrostis stolonifera), with the genes for degradation of RDX. These species possess a number of agronomic traits making them well equipped for the uptake and removal of RDX from root zone leachates. Transformation vectors were constructed with xplA and xplB, which confer the ability to degrade RDX, and nfsI, which encodes a nitroreductase for the detoxification of the co-contaminating explosive 2, 4, 6-trinitrotoluene (TNT). The vectors were transformed into the grass species using Agrobacterium tumefaciens infection. All transformed grass lines showing high transgene expression levels removed significantly more RDX from hydroponic solutions and retained significantly less RDX in their leaf tissues than wild-type plants. Soil columns planted with the best-performing switchgrass line were able to prevent leaching of RDX through a 0.5-m root zone. These plants represent a promising plant biotechnology to sustainably remove RDX from training range soil, thus preventing contamination of groundwater

    Phytoextraction as a tool for green chemistry

    Get PDF
    The unique chemical and physical properties of metals mean that they are extensively utilized by industry in a huge variety of applications, including electronics, materials, industrial catalysts and chemicals. The increased consumer demand from a growing population worldwide with rising aspirations for a better life has resulted in concerns over the security of supply and accessibility of these valuable elements. As such, there is a growing need to develop alternative methods to recover them from waste repositories, current or historic, both for hazard avoidance and potentially, as a new source of metals for industry. Phytoextraction (the use of plants for the recovery of metals from waste repositories) is a green and novel technique for metal recovery, which, if done with the goal of resource supply rather than hazard mitigation, is termed “phytomining”. The ability for plants to form metallic nanoparticles as a consequence of phytoextraction could make the recovered metal ideally suited for utilization in green chemical technologies, such as catalysis. This review focuses on a multidisciplinary approach to elemental sustainability and highlights important aspects of metal lifecycle analysis, metal waste sources (including mine tailings), phytoextraction and potential green chemical applications that may result from the integration of these approaches

    Genetic resources provided by genetic engineering

    No full text

    GM mercury mop

    No full text
    • …
    corecore