177 research outputs found
Pod indehiscence is a domestication and aridity resilience trait in common bean.
Plant domestication has strongly modified crop morphology and development. Nevertheless, many crops continue to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency and genetic redundancy can explain the maintenance of atavistic traits under domestication
Biological Control Efforts of Water hyacinth (Eichhornia crassipes (Mart.) Solm) on Kainji Lake, Nigeria
Biological control of water hyacinth (Eichhornia crassipes (Mart.) Solm) was monitored on Kainji Lake between 1995 and 1999. The two most important host specific natural enemies of water hyacinth (Neochetina eichhorniae and N. bruchi) were used and impacts of the weevils on water hyacinth were monitored on tri-monthly basis. The manual control initiated by the National Institute for Freshwater Fisheries Research (NIFFR) encouraged the fishermen to physically remove water hyacinth from their shores and open water. The lake hydrology, most especially during the drawdown period when the water volume is reduced tremendously, allows water hyacinth plants to be stranded by the bank of the lake thereby leading to massive destruction of the weed population and consequently the weevils population stability. The floristic composition of macrophyte intimately mixed with the water hyacinth was also monitored during the low and high water regimes. Among the prominent plant species found with water hyacinth included Echinochloa stagnina, Mimosa pigra, Polygonium senegalensis Polygonium lanigarium. Sesbania dalzelli, and Vosia cuspidata were found competing with the much favoured Echinochloa spp which serves as forage to livestock around the lake; However, no incidence of weevil attack was observed on any of the vegetation mixed with water hyacinth. Keywords: Biocontol, Kainji Lake, Water hyacinth, Weevils
A Robust Implicit Optimal Order Formula for Direct Integration of Second Order Orbital Problems
In this paper, a robust implicit formula of optimal order for direct integration of general second order orbital problems of ordinary differential equations (ODEs) is proposed. This method is considered capable avoiding the computational burden and wastage in computer time in connection with the method of reduction to first order systems. The integration algorithms and analysis of the basic properties are based on the adoption of Taylor’s expansion and Dahlquist stability model test. The resultant integration formula is of order ten and it is zero-stable, consistent, convergent and symmetric. The numerical implementation of the method to orbital and two-body problems demonstrates increased accuracy with the same computational effort on comparison with similar second order formulas. Keywords: Optimal-order, Zero-stability, Convergence, Consistent, IVPs, Predictor-corrector, Error constant, Symmetric
Consistent effects of independent domestication events on the plant microbiota
The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture
Transcriptomic response to nitrogen availability reveals signatures of adaptive plasticity during tetraploid wheat domestication
The domestication of crops, coupled with agroecosystem development, is associated with major environmental changes and provides an ideal model of phenotypic plasticity. Here, we examined 32 genotypes of three tetraploid wheat (Triticum turgidum L.) subspecies, wild emmer, emmer, and durum wheat, which are representative of the key stages in the domestication of tetraploid wheat. We developed a pipeline that integrates RNA-Seq data and population genomics to assess gene expression plasticity and identify selection signatures under diverse nitrogen availability conditions. Our analysis revealed differing gene expression responses to nitrogen availability across primary (wild emmer to emmer) and secondary (emmer to durum wheat) domestication. Notably, nitrogen triggered the expression of twice as many genes in durum wheat compared to that in emmer and wild emmer. Unique selection signatures were identified at each stage: primary domestication mainly influenced genes related to biotic interactions, whereas secondary domestication affected genes related to amino acid metabolism, in particular lysine. Selection signatures were found in differentially expressed genes (DEGs), notably those associated with nitrogen metabolism, such as the gene encoding glutamate dehydrogenase (GDH). Overall, our study highlights the pivotal role of nitrogen availability in the domestication and adaptive responses of a major food crop, with varying effects across different traits and growth conditions
CRISPR-Cas9-based repeat depletion for the high-throughput genotyping of complex plant genomes
High-throughput genotyping enables the large-scale analysis of genetic diversity in population genomics and genome-wide association studies that combine the genotypic and phenotypic characterization of large collections of accessions. Sequencing-based approaches for genotyping are progressively replacing traditional genotyping methods due to the lower ascertainment bias. However, genome-wide genotyping based on sequencing becomes expensive in species with large genomes and a high proportion of repetitive DNA. Here we describe the use of CRISPR-Cas9 technology to deplete repetitive elements in the 3.76-Gb genome of lentil (Lens culinaris), 84% consisting of repeats, thus concentrating the sequencing data on coding and regulatory regions (single-copy regions). We designed a custom set of 566,766 gRNAs targeting 2.9 Gbp of repeats and excluding repetitive regions overlapping annotated genes and putative regulatory elements based on ATAC-seq data. The novel depletion method removed ~40% of reads mapping to repeats, increasing those mapping to single-copy regions by ~2.6-fold. When analyzing 25 million fragments, this repeat-to-single-copy shift in the sequencing data increased the number of genotyped bases of ~10-fold compared to nondepleted libraries. In the same condition, we were also able to identify ~12-fold more genetic variants in the single-copy regions and increased the genotyping accuracy by rescuing thousands of heterozygous variants that otherwise would be missed due to low coverage. The method performed similarly regardless of the multiplexing level, type of library or genotypes, including different cultivars and a closely-related species (L. orientalis). Our results demonstrated that CRISPR-Cas9-driven repeat depletion focuses sequencing data on meaningful genomic regions, thus improving high-density and genome-wide genotyping in large and repetitive genomes
Adaptive gene loss in the common bean pan-genome during range expansion and domestication
The common bean (Phaseolus vulgaris L.) is a crucial legume crop and an ideal evolutionary model to study adaptive diversity in wild and domesticated populations. Here, we present a common bean pan-genome based on five high-quality genomes and whole-genome reads representing 339 genotypes. It reveals similar to 234 Mb of additional sequences containing 6,905 protein-coding genes missing from the reference, constituting 49% of all presence/absence variants (PAVs). More non-synonymous mutations are found in PAVs than core genes, probably reflecting the lower effective population size of PAVs and fitness advantages due to the purging effect of gene loss. Our results suggest pan-genome shrinkage occurred during wild range expansion. Selection signatures provide evidence that partial or complete gene loss was a key adaptive genetic change in common bean populations with major implications for plant adaptation. The pan-genome is a valuable resource for food legume research and breeding for climate change mitigation and sustainable agriculture
The INCREASE project: Intelligent Collections of food‐legume genetic resources for European agrofood systems
Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources
Towards the Development, Maintenance and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Chickpea
Here we present the approach used to develop the INCREASE “Intelligent Chickpea” Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two phenotypic protocols within H2O20 Project INCREASE to characterize, develop, and maintain chickpea single-seed-descent (SSD) line collections. Such protocols and related genetic resource data from the project will be available for the legume community to apply the standardized approaches to develop Chickpea Intelligent Collections further or for multiplication/seed-increase purposes. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC
New microsatellite loci for annatto (Bixa orellana), a source of natural dyes from Brazilian Amazonia
Annatto (Bixa orellana) is a tropical crop native to the Americas with Amazonia as the likely center of origin of domestication. Annatto is important because it produces the dye bixin, which is widely used in the pharmaceutical, food, cosmetic and textile industries. A total of 32 microsatellite loci were isolated from a microsatellite-enriched genomic library, of which 12 polymorphic loci were used to characterize four populations of B. orellana and B. orellana var. urucurana, the wild relative. Higher genetic diversity estimates were detected for the wild populations when compared to the cultivated populations. Also, higher apparent outcrossing rates were found for the two wild than the cultivated populations. These results indicate a mixed mating system for the species. All markers described herein have potential to be used in further studies evaluating the genetic diversity, population dynamics, domestication, breeding, and conservation genetics of annatto. © 2018, Brazilian Society of Plant Breeding. All rights reserved
- …
