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Abstract 

In this paper, a robust implicit formula of optimal order for direct integration of general second order orbital 

problems of ordinary differential equations (ODEs) is proposed. This method is considered capable avoiding the 

computational burden and wastage in computer time in connection with the method of reduction to first order 

systems. The integration algorithms and analysis of the basic properties are based on the adoption of Taylor’s 

expansion and Dahlquist stability model test. The resultant integration formula is of order ten and it is zero-

stable, consistent, convergent and symmetric. The numerical implementation of the method to orbital and two-

body problems demonstrates increased accuracy with the same computational effort on comparison with similar 

second order formulas. 
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1.Introduction 

In the last decade, a great interest in the research of new methods for the numerical integration of initial value 

problems of the form 

                   
],[,)(),,(' 00 batytyytfy ∈==                                             (1)         

where ℜ→ℜ×ℜ:),,( fytf , the ends a and b of the intervals and the initial value 0y  are given. It is 

assumed that the solution exist and unique. 

Theorem 1 

If ℜ→ℜ×ℜ:),,( fytf  is defined and continuous on all ],[ bat ∈  and  ∞<<∞− y and a constant L  

exist such that 

                      

∗∗ −<−− yyLytfytf ),(),(                                             (2) 

for every pair ),( yt  and ),( ∗yt  on the quoted region then, for any ℜ∈0y  the stated initial value problem 

admits a unique solution which is continuous and differentiable on ],[ ba . The stated condition is called the 

lipschitz condition. For a numerical solution, we introduce a partition of  

),...,2,1(,,:],[ max00 nnhnttatba n =×+== such that btn =
max

which means maxn  and h are linked, 

./)( maxnabh −=  

solution of (1) exhibits a pronounced oscillatory character, this type of ordinary differential equation problems 

often arise in different fields of applied sciences such as celestial mechanics, astrophysics, electronics, molecular 

dynamics, radio-active process, transonic airflow and transverse motion to mention a few. For highly oscillatory 

problems, standard non-specialized method can require a huge number of steps to track the oscillations. One way 

of obtaining a more robust integration process is to construct numerical methods with an increased algebraic 

order, although, the implementation of higher order schemes meet several challenges but they have better 

accuracy. 

The empirical problems leading to higher order differential equations of the form 

                
,...2,1,)(),,...,,,( 10

)1()1()( ==′= −
−− mtyyyytfy m

mmm η                                          (3) 

are often encountered especially by scientist and engineers, the solution of such equations have engaged the 

attention of many mathematicians, both theorist and numerical analyst. Many of such empirical results yielding 

higher order differential equations are not solvable analytically. Numerical methods adopted for such higher 

order differential equations are only capable of handling first order equation (1). This implies that such problems 

will be reduced to first order equations [see for example, Abhulimen and Otunta (2006), Chan et al. (2004), Juan 

(2001), Fatunla (1988)]. The approach of reducing such equations to first order equations lead to serious 

computational burden [Awoyemi (2001),(2005)]. 

Many attempts have been made to formulate numerical algorithms for direct solution of (3) [Bun and Vasil’Yel 

(1992), Jacques and Judd (1987), Awoyemi and Kayode (2005), Parand and Hojjati (2008)], in their approach, 

necessary and sufficient attentions were not given to the property of zero-stability [see for instance, Aruchunan 
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and Sulaiman (2010), Vlachos et. al (2009)]. 

The remaining sections of this paper is organised as follows: In section two, we discuss the method of 

construction, analysis of the basic properties of the proposed scheme is examined in section three. Numerical 

experiment of the new seven-step implicit formula of order ten is carried out on some sample orbital and two-

body problems and compared with existing methods to justify its robustness.    

 

2. Method of construction 
We consider a linear multistep methods  

               ∑ ∑
−

= =
+++ =+=

1

0 0

,...2,1,
k

j

k

j

jnj

m
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defined by Fatunla (1988) as 

                    n

m

n fEhyE )()( δρ =
 

for the solution of initial value problem (3),
 

 )(Eρ   and )(Eδ  are the first and second characteristics 

polynomial of (4), jα  and
 

jβ  are real constants with constraints  

 

 0,0 00 ≠+≠ βαα k    

since otherwise we can assume that 1−= kk ,
 
ρ  and δ  are relatively prime, that is .1),( =δρ

 
The values of the coefficients are determined by the local truncation error (lte) defined as 
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Taylor’s expansions of yn+k, yn+j and fn+j about the point (tn,yn) with the terms collected in powers of h is 

compactly written in the form 

               
{ }776655443322110
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     (6)
 

 By imposing accuracy of order nine on Tn+k, ak=a7=1, adopting the method of expansion as contained in 

Owolabi (2011 a & b), solving the algebraic equations obtained in the form X=A\B, we have 
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Substitution (7) into (4) by taking into account the value of m=2 results to a symmetric seven-step implicit 

scheme 
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Implementation of formula (8) is based on three important factors,  

i. the need to generate starting values yn+j and their corresponding derivatives fn+j = y’’n+j, j=0(1)7, this is 

achieved by PEC that is, Predict, Evaluate and Correct. 
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The error estimate is calculated from 
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whenever error <tolerance, iteration is terminated. 
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ii. the choice of appropriate step-size h 

iii. the need to solve equation (8) 

                          )(
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Where 
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the accuracy of approximation of yn+7 requires the solution of implicit equation (11) rewritten as 

                                        0)( 7 =+nyF .                                                                                                   (12) 

This can be achieved by the adoption of quasi Newton iteration scheme 
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3. Basic properties of the method 

To ascertain the accuracy and suitability of method (8), analysis of its basic properties such as consistency, order 

of accuracy and error constant, symmetry, convergence and zero-stability are undertaken. See, Owolabi (2011 a 

& b) for details. 

 Order of accuracy and error constant 

The local truncation error for k=7 is defined as 

            )(0... 2)1(1

1

)()2(2
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Impose accuracy of order p on Tn+k to obtain Ci=0, i=0,1,..,p, method (8) is of order p=9 with principal error 

constant  

                                              
240

1
2 −=+pC  

Symmetry 

A linear multistep method (8) is symmetric (Lambert and Watson (1976), Fatunla (1988)) if the parameters 

sj 'α and 
sj 'β  satisfy conditions  

                                           
kjjkjjkj )1(0,, === −− ββαα  

                                           
kjjkjjkj )1(0,, =−=−= −− ββαα

                                       (15) 
 

clearly,  the two conditions are satisfied. 

Consistency 

Method (8) is consistent, if 

(i) it has order p ≥ 1, since method (8) is of order 9, condition (i) is satisfied. 

(ii) 6)1(0,0 ==∑ j
k

j

jα  see (2.9) 

(iii) 1,0)()( ==′= rrr ρρ  

(iv) 0),(!2)( ==′′ rrr δρ , see Lambert (1976) for details. 

Zero-stability 

 

Definitions 

i. A linear multistep method for a given initial value problem is said to be zero stable if no root of the first 

characteristic polynomial )(rρ  has modulus greater than one and if every root with modulus one is simple. 

That is 
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From (8), 

                       
017213535217)( 234567 =−+−+−+−= rrrrrrrrρ

                              (16)
 

 that is, (r-1)
7
=0 

meaning that method (8) is zero stable since the roots of )(rρ  all lie in the unit disk, and those that lie on the 

unit circle have multiplicity of one.  

ii. A numerical solution to the class of system (3) is stable if the difference between the numerical solution and 

the theoretical solution can be made as small as possible, that is, if there exist two positive numbers en and C 

such that 

nnn Ctyy l≤− )(  

Convergence 

Definition A linear multistep method that is consistent and zero stable is convergent (Ademiluyi (1987), Fatunla 

(1988), Lambert (1991)). 

 

4 Numerical Results 

Effectiveness and validity of our new method is demonstrated on the three periodic problems as studied by 

Simos (2003) and later in a revised form by Vlachos et.al (2009). 

4.1 A problem by Franco and Palacios 

We consider the almost periodic problem studied by Simos (2003):  

                                     

Czizzzz ti εϖ ψ ,)0(,1)0(, =′==+′′ l

  

 

With equivalent form 
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where 001.0=ϖ and 01.0=ψ
 

 analytical solution of this problem is given as 
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The solution of the motion of a perturbation of a circular orbit in the complex plane is presented in Table 1. 

 

4.2 A problem by Stiefel and Bettis 

The second almost periodic orbital problem earlier studied by Stiefel and Bettis (1969) and later by (Simos (1998, 

2003), Vigo-Anguiar and Simos (2001), Vlachos et.al (2009)). 

                                    Czizzzz it ε,9995.0)0(,1)0(,001.0 =′==+′′ l  

with equivalent form 

                                   ,0)0(,1)0(),cos(001.0 =′==+′′ xxtxx  

                                   .9995.0)0(,0)0(),sin(001.0 =′==+′′ yytyy  

The theoretical solution is 

                                        ,,),()()( ℜ+= εyxtiytxtz  

                                        ),sin(0005.0)cos()( ttttx +=  

                                        ).cos(0005.0)sin()( tttty +=  

4.3 Two-body problem 

Consider the two-body system of coupled differential equations; see Vigo-Anguiar and Simos (2001). 
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where r=(x
2
 + y

2
)

3/2
 and whose analytical solution is given by   

                                       ),cos()( ttx =  

                                       )sin()( tty = . 

 

5. Conclusions 

The three problems studied in (Simos (1998, 2003), Stiefel and Bettis (1969), Vigo-Anguiar and Simos (2001), 

Vlachos et.al (2009)) have been re-examined for any step size in the interval [0,1] using the new implicit formula 

of algebraic order nine. Analysis of the basic properties of our method shows that it is symmetric, consistent and 

zero-stable. Tables 1-3 present the end point global error. The numerical results obtained with the step sizes 

equal to h=2
-n

 for several values of n in the interval of integration were compared with the analytical solution.  
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Table 1: Solution to problem (4.1) for h=2-n, n>0   

  t    Exact[x] Computed[x] Error[x] Exact[y] Computed[y] Error[y] 

1/16 

1/4 

7/16 

5/8 

13/16 

1 

0.9980494633 

0.9689435093 

0.9059078696 

0.8111521558 

0.6879978749 

0.5407619995 

0.9980494622 

0.9689434682 

0.9059070518 

0.8111500424 

0.6879212076 

0.539917176 

9.7150e-10 

4.1024e-08 

8.1782e-07 

1.1133e-06 

7.6667e-05 

8.3028e-04 

0.0624593182 

0.2474039852 

0.4236763954 

0.5850976720 

0.7260095202 

0.8414725701 

0.0624593171 

0.2474039247 

0.4236736176 

0.5850234854 

0.7256493569 

0.8395507379 

1.1002e-09 

6..0481e-08 

2.7778e-06 

7.4186e-05 

3.6016e-04 

1.9218e-03 

 

Table 2: Solution to orbital problem (4.2) for h=2-n, n>0   

  t    Exact[x] Computed[x] Error[x] Exact[y] Computed[y] Error[y] 

1/16 

3/16 

3/8 

5/8 

3/4 

15/16 

0.9980494626 

0.9824907884 

0.9305762980 

0.8111459624 

0.7319444834 

0.5921829256 

0.9980494461 

0.9824903573 

0.9305753150 

0.8111348542 

0.7318741524 

0.59126445036 

1.6428e-08 

4.3110e-07 

9.8301e-07 

1.1108e-05 

7.0331e-05 

9.1842e-04 

0.0624281289 

0.1863111898 

0.3660980589 

0.5848438470 

0.6813643767 

0.8058036996 

0.0624281088 

0.1863105947 

0.3660961928 

0.5848028445 

0.6812960855 

0.8047898881 

2.0012e-08 

5.9516e-07 

1.8660e-06 

4.1001e-05 

6.8291e-04 

1.0138e-03 

 

Table 3: Solution to two-body system (4.3) for h=2-n, n>0   

  t    Exact[x] Computed[x] Error[x] Exact[y] Computed[y] Error[y] 

1/16 

1/4 

7/16 

5/8 

3/4 

15/16 

0.9980475107 

0.9689124217 

0.9058136834 

0.8109631195 

0.7316888688 

0.5918050751 

0.9980475084 

0.9689123336 

0.9058135820 

0.8109579881 

0.7316688520 

0.5911368239 

2.2381e-09 

8.8112e-08 

1.0144e-07 

5.1314e-06 

2.0017e-05 

6.6825e-04 

0.0624593178 

0.2474039592 

0.4236762572 

0.5850972729 

0.6816387600 

0.8060811083 

0.0624593077 

0.2474033485 

0.4236739470 

0.5850524508 

0.6814397497 

0.8050792884 

1.0081e-08 

6.1074e-07 

2.3101e-06 

4.4822e-05 

1.9901e-04 

1.0018e-03 
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