33 research outputs found

    Paradoxical expression of IL-28B mRNA in peripheral blood in human T-cell leukemia virus Type-1 mono-infection and co-infection with hepatitis C Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type-1 (HTLV-1) carriers co-infected with and hepatitis C virus (HCV) have been known to be at higher risk of their related diseases than mono-infected individuals. The recent studies clarified that IL-28B polymorphism rs8099917 is associated with not only the HCV therapeutic response by IFN, but also innate immunity and antiviral activity. The aim of our research was to clarify study whether IL-28B gene polymorphism (rs8099917) is associated with HTLV-1/HCV co-infection.</p> <p>Results</p> <p>The genotyping and viral-serological analysis for 340 individuals showed that IL-28B genotype distribution of rs8099917 SNP did not differ significantly by respective viral infection status. However, the IL-28B mRNA expression level was 3.8 fold higher in HTLV-1 mono-infection than HTLV-1/HCV co-infection. The high expression level was associated with TT (OR, 6.25), whiles the low expression was associated with co-infection of the two viruses (OR, 9.5). However, there was no association between down-regulation and ATL development (OR, 0.8).</p> <p>Conclusion</p> <p>HTLV-1 mono-infection up-regulates the expression of IL-28B transcripts in genotype-dependent manner, whiles HTLV-1/HCV co-infection down-regulates regardless of ATL development.</p

    In vivo expression of the HBZ gene of HTLV-1 correlates with proviral load, inflammatory markers and disease severity in HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ), encoded from a minus strand mRNA was discovered and was suggested to play an important role in adult T cell leukemia (ATL) development. However, there have been no reports on the role of HBZ in patients with HTLV-1 associated inflammatory diseases.</p> <p>Results</p> <p>We quantified the HBZ and tax mRNA expression levels in peripheral blood from 56 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients, 10 ATL patients, 38 healthy asymptomatic carriers (HCs) and 20 normal uninfected controls, as well as human leukemic T-cell lines and HTLV-1-infected T-cell lines, and the data were correlated with clinical parameters. The spliced HBZ gene was transcribed in all HTLV-1-infected individuals examined, whereas tax mRNA was not transcribed in significant numbers of subjects in the same groups. Although the amount of HBZ mRNA expression was highest in ATL, medium in HAM/TSP, and lowest in HCs, with statistical significance, neither tax nor the HBZ mRNA expression per HTLV-1-infected cell differed significantly between each clinical group. The HTLV-1 HBZ, but not tax mRNA load, positively correlated with disease severity and with neopterin concentration in the cerebrospinal fluid of HAM/TSP patients. Furthermore, HBZ mRNA expression per HTLV-1-infected cell was decreased after successful immunomodulatory treatment for HAM/TSP.</p> <p>Conclusion</p> <p>These findings suggest that <it>in vivo </it>expression of HBZ plays a role in HAM/TSP pathogenesis.</p

    Application of Multi-SNP Approaches Bayesian LASSO and AUC-RF to Detect Main Effects of Inflammatory-Gene Variants Associated with Bladder Cancer Risk

    Get PDF
    The relationship between inflammation and cancer is well established in several tumor types, including bladder cancer. We performed an association study between 886 inflammatory-gene variants and bladder cancer risk in 1,047 cases and 988 controls from the Spanish Bladder Cancer (SBC)/EPICURO Study. A preliminary exploration with the widely used univariate logistic regression approach did not identify any significant SNP after correcting for multiple testing. We further applied two more comprehensive methods to capture the complexity of bladder cancer genetic susceptibility: Bayesian Threshold LASSO (BTL), a regularized regression method, and AUC-Random Forest, a machine-learning algorithm. Both approaches explore the joint effect of markers. BTL analysis identified a signature of 37 SNPs in 34 genes showing an association with bladder cancer. AUC-RF detected an optimal predictive subset of 56 SNPs. 13 SNPs were identified by both methods in the total population. Using resources from the Texas Bladder Cancer study we were able to replicate 30% of the SNPs assessed. The associations between inflammatory SNPs and bladder cancer were reexamined among non-smokers to eliminate the effect of tobacco, one of the strongest and most prevalent environmental risk factor for this tumor. A 9 SNP-signature was detected by BTL. Here we report, for the first time, a set of SNP in inflammatory genes jointly associated with bladder cancer risk. These results highlight the importance of the complex structure of genetic susceptibility associated with cancer risk.The work was partially supported by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174 and Sara Borrell fellowship to ELM) and Ministry of Science and Innovation (MTM2008-06747-C02-02 and FPU fellowship award to VU), Spain; AGAUR-Generalitat de Catalunya (Grant 2009SGR-581); Fundaciola Maratode TV3; Red Tematica de Investigacion Cooperativa en Cancer (RTICC); Asociacion Espanola Contra el Cancer (AECC); EU-FP7-201663; and RO1-CA089715 and CA34627; the Spanish National Institute for Bioinformatics (www.inab.org); and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA. MD Anderson support for this project included U01 CA 127615 (XW); R01 CA 74880 (XW); P50 CA 91846 (XW, CPD); Betty B. Marcus Chair fund in Cancer Prevention (XW); UT Research Trust fund (XW) and R01 CA 131335 (JG)

    Inhibition of IGF-1 Signalling Enhances the Apoptotic Effect of AS602868, an IKK2 Inhibitor, in Multiple Myeloma Cell Lines

    Get PDF
    Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-ΞΊB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-ΞΊB inhibitors

    Genome-wide homozygosity and risk of four non-Hodgkin lymphoma subtypes

    Get PDF
    Aim: Recessive genetic variation is thought to play a role in non-Hodgkin lymphoma (NHL) etiology. Runs of homozygosity (ROH), defined based on long, continuous segments of homozygous SNPs, can be used to estimate both measured and unmeasured recessive genetic variation. We sought to examine genome-wide homozygosity and NHL risk. Methods: We used data from eight genome-wide association studies of four common NHL subtypes: 3061 chronic lymphocytic leukemia (CLL), 3814 diffuse large B-cell lymphoma (DLBCL), 2784 follicular lymphoma (FL), and 808 marginal zone lymphoma (MZL) cases, as well as 9374 controls. We examined the effect of homozygous variation on risk by: (1) estimating the fraction of the autosome containing runs of homozygosity (FROH); (2) calculating an inbreeding coefficient derived from the correlation among uniting gametes (F3); and (3) examining specific autosomal regions containing ROH. For each, we calculated beta coefficients and standard errors using logistic regression and combined estimates across studies using random-effects meta-analysis. Results: We discovered positive associations between FROH and CLL (Ξ² = 21.1, SE = 4.41, P = 1.6 Γ— 10-6) and FL (Ξ² = 11.4, SE = 5.82, P = 0.02) but not DLBCL (P = 1.0) or MZL (P = 0.91). For F3, we observed an association with CLL (Ξ² = 27.5, SE = 6.51, P = 2.4 Γ— 10-5). We did not find evidence of associations with specific ROH, suggesting that the associations observed with FROH and F3 for CLL and FL risk were not driven by a single region of homozygosity. Conclusion: Our findings support the role of recessive genetic variation in the etiology of CLL and FL; additional research is needed to identify the specific loci associated with NHL risk

    A genome-wide association study of marginal zone lymphoma shows association to the HLA region

    Get PDF
    Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P=3.95 Γ— 10βˆ’15) and HLA-B (rs2922994, P=2.43 Γ— 10βˆ’9) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility

    The association between genetically elevated polyunsaturated fatty acids and risk of cancer

    Get PDF
    Background The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. Methods Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. Findings Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07–1.11]), esophageal squamous cell carcinoma (1.16 [1.06–1.26]), lung cancer (1.06 [1.03–1.08]) and basal cell carcinoma (1.05 [1.02–1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99–1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99–1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95–1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98–1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. Interpretation The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease

    Genetic variability in <it>IGF-1</it> and <it>IGFBP-3</it> and body size in early life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early life body size and circulating levels of IGF-1 and IGFBP-3 have been linked to increased risks of breast and other cancers, but it is unclear whether these exposures act through a common mechanism. Previous studies have examined the role of <it>IGF-1</it> and <it>IGFBP-3</it> genetic variation in relation to adult height and body size, but few studies have examined associations with birthweight and childhood size.</p> <p>Methods</p> <p>We examined whether htSNPs in <it>IGF-1</it> and the <it>IGFBP-1</it>/<it>IGFBP-3</it> gene region are associated with the self-reported outcomes of birthweight, body fatness at ages 5 and 10, and body mass index (BMI) at age 18 among healthy women from the Nurses’ Health Study (NHS) and NHSII. We used ordinal logistic regression to model odds ratios (ORs) and 95% confidence intervals (CI) of a one category increase for birthweight and somatotypes at ages 5 and 10. We used linear regression to model associations with BMI at age 18.</p> <p>Results</p> <p>Among 4567 healthy women in NHS and NHSII, we observed no association between common <it>IGF-1</it> or <it>IGFBP-1</it>/<it>IGFBP-3</it> SNPs and birthweight, body fatness at ages 5 and 10, or BMI at age 18.</p> <p>Conclusions</p> <p>Common <it>IGF-1</it> and <it>IGFBP-1</it>/<it>IGFBP-3</it> SNPs are not associated with body size in early life.</p
    corecore