1,083 research outputs found

    The scale dependence and structure of convergence fields preceding the initiation of deep convection

    Get PDF
    Links between convergence and convection are poor in global models, and poor representation of convection is the source of many model biases in the tropics. State-of-the-art convection-permitting simulations allow us to analyze realistic convection statistically. The analysis of fractal dimension is used to show that in convection-permitting simulations (grid spacings 1.5, 4, and 12 km) of the West African monsoon, 50% of deep convective initiations occur in the near vicinity of low-level boundary layer convergence lines that are orientated along the mean wind. In these simulations, more than 80% of the initiations occur within large-scale (300 × 300 km) convergence, with some 20% in large-scale divergence, and almost all cases occur within local scale (60 × 60 km) convergence. The behavior alters in a simulation with a convection scheme and a grid spacing of 12 km; initiation is less frequent over convergence lines, and there is less dependency on high-magnitude low-level local convergence. Key Points Fifty percent of storms initiate along convergence lines Most initiations occur in large and local scale convergence Parameterized convection exhibits a weaker dependence on strong convergence ©2014. American Geophysical Union. All Rights Reserved

    The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis

    Get PDF
    Francisella tularensis is an extremely virulent bacterium that can be transmitted naturally by blood sucking arthropods. During mammalian infection, F. tularensis infects numerous types of host cells, including erythrocytes. As erythrocytes do not undergo phagocytosis or endocytosis, it remains unknown how F. tularensisinvades these cells. Furthermore, the consequence of inhabiting the intracellular space of red blood cells (RBCs) has not been determined. Here, we provide evidence indicating that residing within an erythrocyte enhances the ability of F. tularensis to colonize ticks following a blood meal. Erythrocyte residence protected F. tularensis from a low pH environment similar to that of gut cells of a feeding tick. Mechanistic studies revealed that the F. tularensis type VI secretion system (T6SS) was required for erythrocyte invasion as mutation of mglA (a transcriptional regulator of T6SS genes), dotU, or iglC (two genes encoding T6SS machinery) severely diminished bacterial entry into RBCs. Invasion was also inhibited upon treatment of erythrocytes with venom from the Blue-bellied black snake (Pseudechis guttatus), which aggregates spectrin in the cytoskeleton, but not inhibitors of actin polymerization and depolymerization. These data suggest that erythrocyte invasion by F. tularensis is dependent on spectrin utilization which is likely mediated by effectors delivered through the T6SS. Our results begin to elucidate the mechanism of a unique biological process facilitated by F. tularensis to invade erythrocytes, allowing for enhanced colonization of ticks

    Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Kieft, B., Hobson, B. W., Ryan, J. P., Barone, B., Preston, C. M., Roman, B., Raanan, B., Marin,Roman,,III, O'Reilly, T. C., Rueda, C. A., Pargett, D., Yamahara, K. M., Poulos, S., Romano, A., Foreman, G., Ramm, H., Wilson, S. T., DeLong, E. F., Karl, D. M., Birch, J. M., Bellingham, J. G., & Scholin, C. A. Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 45(4), (2020): 1308-1321, doi:10.1109/JOE.2019.2920217.Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV's vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.10.13039/501100008982 - National Science Foundation 10.13039/100000936 - Gordon and Betty Moore Foundation 10.13039/100000008 - David and Lucile Packard Foundation 10.13039/100016377 - Schmidt Ocean Institute 10.13039/100000893 - Simons Foundatio

    Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

    Get PDF
    BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m(3) (geometric mean 4.21 μg/m(3)) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level

    Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in US facilities

    Get PDF
    Background Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 mu g/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. Results Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. Conclusion Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters

    Childhood solid tumours in relation to population mixing around the time of birth

    Get PDF
    In a retrospective cohort study of 673 787 live births in the Northern Region of England, 1975 - 1994, we investigated whether a higher level of population mixing around birth was a risk factor for solid tumours, by diagnostic group (Hodgkin's disease, brain and spinal tumours, neuroblastoma, other solid tumours), diagnosed during 1975-2001 under age 15 years. Logistic regression was used to relate risk to population mixing, based on (i) all movers and (ii) incomers from outside the region. Both ward and county district level analyses were performed. There was a decreased risk of brain and spinal tumours with increasing population mixing based on incomers from outside the region (OR for trend across three categories = 0.79, 95% CI: 0.66-0.95, P = 0.01 in the ward level analysis). Although this may be because of chance, it is consistent with a role of exposure to infection and immunological response in the aetiology of these tumours. For other tumour groups, there was no consistent evidence of an association between risk and population mixing
    corecore