15 research outputs found

    N-functionalised expanded-ring N-heterocyclic carbenes: Synthesis, structure and catalysis

    Get PDF
    The work presented in this thesis is concerned with the synthesis, metal coordination and applications of expanded (6- and 7-membered) N-functionalised heterocyclic carbenes. It is divided into four chapters, which cover the following areas of research. Chapter One includes the historical and literature review of preparations, reactions, and catalysis applications for different-types of NHC, while in Chapter Two, the syntheses characterisation and solid state properties of new 6- and 7-membered NHC salts (with Mes, DIPP, o-MeOPh and o-MeSPh A/-substituents) are discussed. A new method for synthesising saturated NHC salts, using potassium carbonate as a mild base for the deprotonation of the corresponding formamidines reacted with di-electrophiles under aerobic conditions is presented. Chapter Three describes the syntheses characterisation and solid state structure of rhodium and iridium complexes. Expansion of the ring provides carbenes with NCnhcN angle close to the sp2 angle (120 ), which forces the A/-substituents to bend closer to the metal center. Furthermore, the expanded carbenes are found to be more basic than their 5-membered analogues. The wide NCnhcN angles and greater donor abilities of the expanded NHC carbenes mean that their catalytic applications are interesting to study. Chapter Four presents the results of catalytic performance for the 6- and 7-membered NHC rhodium and iridium complexes in olefin hydrogenation reactions with molecular hydrogen. These complexes are also tested as catalysts in the transfer hydrogenation of ketones

    Use of ring-expanded diamino- and diamidocarbene ligands in copper catalyzed azide-alkyne "click" reactions

    Get PDF
    The two-coordinate ring-expanded N-heterocyclic carbene copper­(I) complexes [Cu­(RE-NHC)<sub>2</sub>]<sup>+</sup> (RE-NHC = 6-Mes, 7-<i>o</i>-Tol, 7-Mes) have been prepared and shown to be effective catalysts under neat conditions for the 1,3-dipolar cycloaddition of alkynes and azides. In contrast, the cationic diamidocarbene analogue [Cu­(6-MesDAC)<sub>2</sub>]<sup>+</sup> and the neutral species [(6-MesDAC)­CuCl]<sub>2</sub> and [(6-MesDAC)<sub>2</sub>(CuCl)<sub>3</sub>] show good activity when the catalysis is performed on water

    N-functionalised expanded-ring N-heterocyclic carbenes : synthesis, structure and catalysis

    No full text
    The work presented in this thesis is concerned with the synthesis, metal coordination and applications of expanded (6- and 7-membered) N-functionalised heterocyclic carbenes. It is divided into four chapters, which cover the following areas of research. Chapter One includes the historical and literature review of preparations, reactions, and catalysis applications for different-types of NHC, while in Chapter Two, the syntheses characterisation and solid state properties of new 6- and 7-membered NHC salts (with Mes, DIPP, o-MeOPh and o-MeSPh A/-substituents) are discussed. A new method for synthesising saturated NHC salts, using potassium carbonate as a mild base for the deprotonation of the corresponding formamidines reacted with di-electrophiles under aerobic conditions is presented. Chapter Three describes the syntheses characterisation and solid state structure of rhodium and iridium complexes. Expansion of the ring provides carbenes with NCnhcN angle close to the sp2 angle (120 ), which forces the A/-substituents to bend closer to the metal center. Furthermore, the expanded carbenes are found to be more basic than their 5-membered analogues. The wide NCnhcN angles and greater donor abilities of the expanded NHC carbenes mean that their catalytic applications are interesting to study. Chapter Four presents the results of catalytic performance for the 6- and 7-membered NHC rhodium and iridium complexes in olefin hydrogenation reactions with molecular hydrogen. These complexes are also tested as catalysts in the transfer hydrogenation of ketones.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Synthesis, Characterization, and Anticancer Activity of Phosphanegold(i) Complexes of 3-Thiosemicarbano-butan-2-one Oxime

    No full text
    Four novel phosphanegold(I) complexes of the type [Au(PR3)(DMT)].PF6 (1–4) were synthesized from 3-Thiosemicarbano-butan-2-one oxime ligand (TBO) and precursors [Au(PR3)Cl], (where R = methyl (1), ethyl (2), tert-butyl (3), and phenyl (4)). The resulting complexes were characterized by elemental analyses and melting point as well as various spectroscopic techniques, including FTIR and (1H, 13C, and 31P) NMR spectroscopy. The spectroscopic data confirmed the coordination of TBO ligands to phosphanegold(I) moiety. The solution chemistry of complexes 1–4 indicated their stability in both dimethyl sulfoxide (DMSO) and a mixture of EtOH:H2O (1:1). In vitro cytotoxicity of the complexes was evaluated relative to cisplatin using an MTT assay against three different cancer cell lines: HCT116 (human colon cancer), MDA-MB-231 (human breast cancer), and B16 (murine skin cancer). Complexes 2, 3, and 4 exhibited significant cytotoxic effects against all tested cancer cell lines and showed significantly higher activity than cisplatin. To elucidate the mechanism underlying the cytotoxic effects of the phosphanegold(I) TBO complexes, various assays were employed, including mitochondrial membrane potential, ROS production, and gene expression analyses. The data obtained suggest that complex 2 exerts potent anticancer activity against breast cancer cells (MDA-MB-231) through the induction of oxidative stress, mitochondrial dysfunction, and apoptosis. Gene expression analyses showed an increase in the activity of the proapoptotic gene caspase-3 and a reduction in the activity of the antiapoptotic gene BCL-xL, which supported the findings that apoptosis had occurred

    Base free transfer hydrogenation using a covalent triazine framework based catalyst

    Full text link
    [EN] Isomerisation of allylic alcohols to saturated ketones can be efficiently catalysed by a heterogeneous molecular system resulting from (IrCp)-Cp-III* anchoring to a covalent triazine framework. The obtained catalysts are active, selective, and fully recyclable.Financial support from the Generalitat Valenciana (projects Consolider-Ingenio MULTICAT and AICO/2015/065), the Spanish Ministry of Economy and Competitiveness (MINECO) (program Severo Ochoa SEV20120267), and the Spanish Ministry of Science and Innovation (MICINN) (project MAT2014-52085-C2-1-P) are gratefully acknowledged. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641887 (project acronym: DEFNET). Also, financial support from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement number 309701, project Eco2CO2 is acknowledged.Bavykina, A.; Mautschke, H.; Makkee, M.; Kapteijn, F.; Gascon, J.; LlabrĂ©s I Xamena, FX. (2017). Base free transfer hydrogenation using a covalent triazine framework based catalyst. CrystEngComm. 19(29):4166-4170. https://doi.org/10.1039/C7CE00561JS416641701929Wang, D., & Astruc, D. (2015). The Golden Age of Transfer Hydrogenation. Chemical Reviews, 115(13), 6621-6686. doi:10.1021/acs.chemrev.5b00203Cirujano, F. G., Leyva-PĂ©rez, A., Corma, A., & LlabrĂ©s i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878Khajavi, H., Stil, H. A., Kuipers, H. P. C. E., Gascon, J., & Kapteijn, F. (2013). Shape and Transition State Selective Hydrogenations Using Egg-Shell Pt-MIL-101(Cr) Catalyst. ACS Catalysis, 3(11), 2617-2626. doi:10.1021/cs400681sCorma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383Azua, A., Mata, J. A., & Peris, E. (2011). Iridium NHC Based Catalysts for Transfer Hydrogenation Processes Using Glycerol as Solvent and Hydrogen Donor. Organometallics, 30(20), 5532-5536. doi:10.1021/om200796cAzua, A., Mata, J. A., Peris, E., Lamaty, F., Martinez, J., & Colacino, E. (2012). Alternative Energy Input for Transfer Hydrogenation using Iridium NHC Based Catalysts in Glycerol as Hydrogen Donor and Solvent. Organometallics, 31(10), 3911-3919. doi:10.1021/om300109eAzua, A., Sanz, S., & Peris, E. (2011). Water-Soluble IrIII N-Heterocyclic Carbene Based Catalysts for the Reduction of CO2 to Formate by Transfer Hydrogenation and the Deuteration of Aryl Amines in Water. Chemistry - A European Journal, 17(14), 3963-3967. doi:10.1002/chem.201002907Binobaid, A., Iglesias, M., Beetstra, D., Dervisi, A., Fallis, I., & Cavell, K. J. (2010). Donor-Functionalised Expanded Ring N-Heterocyclic Carbenes: Highly Effective Ligands in Ir-Catalysed Transfer Hydrogenation. European Journal of Inorganic Chemistry, 2010(34), 5426-5431. doi:10.1002/ejic.201000680Furfari, S. K., Gyton, M. R., Twycross, D., & Cole, M. L. (2015). Air stable NHCs: a study of stereoelectronics and metallorganic catalytic activity. Chemical Communications, 51(1), 74-76. doi:10.1039/c4cc06809bGong, X., Zhang, H., & Li, X. (2011). Iridium phosphine abnormal N-heterocyclic carbene complexes in catalytic hydrogen transfer reactions. Tetrahedron Letters, 52(43), 5596-5600. doi:10.1016/j.tetlet.2011.08.058GĂŒlcemal, D., Gökçe, A. G., GĂŒlcemal, S., & Çetinkaya, B. (2014). Hydroxyl and ester functionalized N-heterocyclic carbene complexes of iridium(i): efficient catalysts for transfer hydrogenation reactions. RSC Adv., 4(50), 26222-26230. doi:10.1039/c4ra02993cGĂŒlcemal, S., Gökçe, A. G., & Çetinkaya, B. (2013). Iridium(i) N-heterocyclic carbene complexes of benzimidazol-2-ylidene: effect of electron donating groups on the catalytic transfer hydrogenation reaction. Dalton Trans., 42(20), 7305-7311. doi:10.1039/c2dt32482bGĂŒlcemal, S., Gökçe, A. G., & Çetinkaya, B. (2013). N-Benzyl Substituted N-Heterocyclic Carbene Complexes of Iridium(I): Assessment in Transfer Hydrogenation Catalyst. Inorganic Chemistry, 52(18), 10601-10609. doi:10.1021/ic401626eJimĂ©nez, M. V., FernĂĄndez-Tornos, J., PĂ©rez-Torrente, J. J., Modrego, F. J., Garcı́a-Orduña, P., & Oro, L. A. (2015). Mechanistic Insights into Transfer Hydrogenation Catalysis by [Ir(cod)(NHC)2]+ Complexes with Functionalized N-Heterocyclic Carbene Ligands. Organometallics, 34(5), 926-940. doi:10.1021/om5013083JimĂ©nez, M. V., FernĂĄndez-Tornos, J., PĂ©rez-Torrente, J. J., Modrego, F. J., Winterle, S., Cunchillos, C., 
 Oro, L. A. (2011). Iridium(I) Complexes with Hemilabile N-Heterocyclic Carbenes: Efficient and Versatile Transfer Hydrogenation Catalysts. Organometallics, 30(20), 5493-5508. doi:10.1021/om200747kZhu, X.-H., Cai, L.-H., Wang, C.-X., Wang, Y.-N., Guo, X.-Q., & Hou, X.-F. (2014). Efficient and versatile transfer hydrogenation catalysts: Iridium (III) and ruthenium (II) complexes with 4-acetylbenzyl-N-heterocyclic carbenes. Journal of Molecular Catalysis A: Chemical, 393, 134-141. doi:10.1016/j.molcata.2014.06.004Maity, R., Hohloch, S., Su, C.-Y., van der Meer, M., & Sarkar, B. (2014). Cyclometalated Mono- and Dinuclear IrIIIComplexes with «Click»-Derived Triazoles and Mesoionic Carbenes. Chemistry - A European Journal, 20(32), 9952-9961. doi:10.1002/chem.201402838Ruff, A., Kirby, C., Chan, B. C., & O’Connor, A. R. (2016). Base-Free Transfer Hydrogenation of Ketones Using Cp*Ir(pyridinesulfonamide)Cl Precatalysts. Organometallics, 35(3), 327-335. doi:10.1021/acs.organomet.5b00864VĂĄzquez-Villa, H., Reber, S., Ariger, M. A., & Carreira, E. M. (2011). Iridium Diamine Catalyst for the Asymmetric Transfer Hydrogenation of Ketones. Angewandte Chemie International Edition, 50(38), 8979-8981. doi:10.1002/anie.201102732Wang, C., Pettman, A., Basca, J., & Xiao, J. (2010). A Versatile Catalyst for Reductive Amination by Transfer Hydrogenation. Angewandte Chemie International Edition, 49(41), 7548-7552. doi:10.1002/anie.201002944Wei, Y., Xue, D., Lei, Q., Wang, C., & Xiao, J. (2013). Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water. Green Chemistry, 15(3), 629. doi:10.1039/c2gc36619cWu, X., Li, X., Zanotti-Gerosa, A., Pettman, A., Liu, J., Mills, A. J., & Xiao, J. (2008). RhIII- and IrIII-Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water. Chemistry - A European Journal, 14(7), 2209-2222. doi:10.1002/chem.200701258Gawande, M. B., Guo, H., Rathi, A. K., Branco, P. S., Chen, Y., Varma, R. S., & Peng, D.-L. (2013). First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds. RSC Adv., 3(4), 1050-1054. doi:10.1039/c2ra22143hLiu, G., Gu, H., Sun, Y., Long, J., Xu, Y., & Li, H. (2011). Magnetically Recoverable Nanoparticles: Highly Efficient Catalysts for Asymmetric Transfer Hydrogenation of Aromatic Ketones in Aqueous Medium. Advanced Synthesis & Catalysis, 353(8), 1317-1324. doi:10.1002/adsc.201100017Nasir Baig, R. B., & Varma, R. S. (2013). Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustainable Chemistry & Engineering, 1(7), 805-809. doi:10.1021/sc400032kSun, Y., Liu, G., Gu, H., Huang, T., Zhang, Y., & Li, H. (2011). Magnetically recoverable SiO2-coated Fe3O4nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Chem. Commun., 47(9), 2583-2585. doi:10.1039/c0cc03730cHaraguchi, N., Nishiyama, A., & Itsuno, S. (2010). Synthesis of polymer microspheres functionalized with chiral ligand by precipitation polymerization and their application to asymmetric transfer hydrogenation. Journal of Polymer Science Part A: Polymer Chemistry, 48(15), 3340-3349. doi:10.1002/pola.24118Marcos, R., Jimeno, C., & PericĂ s, M. A. (2011). Polystyrene-Supported Enantiopure 1,2-Diamines: Development of a Most Practical Catalyst for the Asymmetric Transfer Hydrogenation of Ketones. Advanced Synthesis & Catalysis, 353(8), 1345-1352. doi:10.1002/adsc.201000948Molla, R. A., Roy, A. S., Ghosh, K., Salam, N., Iqubal, M. A., Tuhina, K., & Islam, S. M. (2015). Polymer anchored ruthenium complex: A highly active and recyclable catalyst for one-pot azide–alkyne cycloaddition and transfer-hydrogenation of ketones under mild conditions. Journal of Organometallic Chemistry, 776, 170-179. doi:10.1016/j.jorganchem.2014.11.007Sugie, H., Hashimoto, Y., Haraguchi, N., & Itsuno, S. (2014). Synthesis of polymer-immobilized TsDPEN ligand and its application in asymmetric transfer hydrogenation of cyclic sulfonimine. Journal of Organometallic Chemistry, 751, 711-716. doi:10.1016/j.jorganchem.2013.09.008Wang, R., Wan, J., Ma, X., Xu, X., & Liu, L. (2013). Anchored [RuCl2(p-cymene)]2 in hybrid zirconium phosphate–phosphonate coated and pillared with double-stranded hydrophobic linear polystyrene as heterogeneous catalyst suitable for aqueous asymmetric transfer hydrogenation. Dalton Transactions, 42(18), 6513. doi:10.1039/c3dt33015jXu, X., Wang, R., Wan, J., Ma, X., & Peng, J. (2013). Phosphonate-containing polystyrene copolymer-supported Ru catalyst for asymmetric transfer hydrogenation in water. RSC Advances, 3(19), 6747. doi:10.1039/c3ra22057eGopiraman, M., Babu, S. G., Khatri, Z., Wei, K., Endo, M., Karvembu, R., & Kim, I. S. (2013). Facile and homogeneous decoration of RuO2 nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds. Catalysis Science & Technology, 3(6), 1485. doi:10.1039/c3cy20735hGopiraman, M., Ganesh Babu, S., Khatri, Z., Kai, W., Kim, Y. A., Endo, M., 
 Kim, I. S. (2013). Dry Synthesis of Easily Tunable Nano Ruthenium Supported on Graphene: Novel Nanocatalysts for Aerial Oxidation of Alcohols and Transfer Hydrogenation of Ketones. The Journal of Physical Chemistry C, 117(45), 23582-23596. doi:10.1021/jp402978qBarati, B., Moghadam, M., Rahmati, A., Mirkhani, V., Tangestaninejad, S., & Mohammadpoor-Baltork, I. (2013). Ruthenium hydride complex supported on multi-wall carbon nanotubes for catalytic C–C bond formation via transfer hydrogenation. Journal of Organometallic Chemistry, 724, 32-39. doi:10.1016/j.jorganchem.2012.10.028Blanco, M., Álvarez, P., Blanco, C., JimĂ©nez, M. V., FernĂĄndez-Tornos, J., PĂ©rez-Torrente, J. J., 
 MenĂ©ndez, R. (2013). Enhanced Hydrogen-Transfer Catalytic Activity of Iridium N-Heterocyclic Carbenes by Covalent Attachment on Carbon Nanotubes. ACS Catalysis, 3(6), 1307-1317. doi:10.1021/cs4000798Gopiraman, M., Babu, S. G., Karvembu, R., & Kim, I. S. (2014). Nanostructured RuO2 on MWCNTs: Efficient catalyst for transfer hydrogenation of carbonyl compounds and aerial oxidation of alcohols. Applied Catalysis A: General, 484, 84-96. doi:10.1016/j.apcata.2014.06.032Chen, S.-J., You, H.-X., Vo-Thanh, G., & Liu, Y. (2013). Heterogeneous transfer hydrogenation over mesoporous SBA-15 co-modified by anionic sulfonate and cationic Ru(III) complex. Monatshefte fĂŒr Chemie - Chemical Monthly, 144(6), 851-858. doi:10.1007/s00706-012-0889-zCheng, T., Long, J., Liang, X., Liu, R., & Liu, G. (2014). Exploiting mesoporous silica matrixes for aqueous asymmetric transfer hydrogenation: morphology and surface chemistry dominate catalytic performance. Materials Research Bulletin, 53, 1-6. doi:10.1016/j.materresbull.2014.01.019Liu, P. N., Gu, P. M., Wang, F., & Tu, Y. Q. (2004). Efficient Heterogeneous Asymmetric Transfer Hydrogenation of Ketones Using Highly Recyclable and Accessible Silica-Immobilized Ru-TsDPEN Catalysts. Organic Letters, 6(2), 169-172. doi:10.1021/ol036065zLou, L.-L., Du, H., Shen, Y., Yu, K., Yu, W., Chen, Q., & Liu, S. (2014). Chiral Ir(I) complex supported on external surface passivated SBA-15 as heterogeneous catalyst for asymmetric transfer hydrogenation of aromatic ketones. Microporous and Mesoporous Materials, 187, 94-99. doi:10.1016/j.micromeso.2013.12.026Sarkar, S. M., Yusoff, M. M., & Rahman, M. L. (2014). Asymmetric Transfer Hydrogenation Catalyzed by Mesoporous MCM-41-Supported Chiral Ru-Complex. Journal of the Chinese Chemical Society, 62(2), 177-181. doi:10.1002/jccs.201400319Shen, Y., Chen, Q., Lou, L.-L., Yu, K., Ding, F., & Liu, S. (2010). Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by SBA-15 Supported Ir(I) Complex Under Mild Conditions. Catalysis Letters, 137(1-2), 104-109. doi:10.1007/s10562-010-0341-0Zhang, D., Xu, J., Zhao, Q., Cheng, T., & Liu, G. (2014). A Site-Isolated Organoruthenium-/Organopalladium-Bifunctionalized Periodic Mesoporous Organosilica Catalyzes Cascade Asymmetric Transfer Hydrogenation and Suzuki Cross-Coupling. ChemCatChem, 6(10), 2998-3003. doi:10.1002/cctc.201402445Kantam, M. L., Rao, B. P. C., Choudary, B. M., & Sreedhar, B. (2006). Selective Transfer Hydrogenation of Carbonyl Compounds by Ruthenium Nanoclusters Supported on Alkali-Exchanged Zeolite Beta. Advanced Synthesis & Catalysis, 348(14), 1970-1976. doi:10.1002/adsc.200505497Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9ZHU, Y., CHUAH, G., & JAENICKE, S. (2004). Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 227(1), 1-10. doi:10.1016/j.jcat.2004.05.037Corma, A., LlabrĂ©s i Xamena, F. X., Prestipino, C., Renz, M., & Valencia, S. (2009). Water Resistant, Catalytically Active Nb and Ta Isolated Lewis Acid Sites, Homogeneously Distributed by Direct Synthesis in a Beta Zeolite. The Journal of Physical Chemistry C, 113(26), 11306-11315. doi:10.1021/jp902375nGao, Y., Jaenicke, S., & Chuah, G.-K. (2014). Highly efficient transfer hydrogenation of aldehydes and ketones using potassium formate over AlO(OH)-entrapped ruthenium catalysts. Applied Catalysis A: General, 484, 51-58. doi:10.1016/j.apcata.2014.07.010Hengne, A. M., Malawadkar, A. V., Biradar, N. S., & Rode, C. V. (2014). Surface synergism of an Ag–Ni/ZrO2 nanocomposite for the catalytic transfer hydrogenation of bio-derived platform molecules. RSC Advances, 4(19), 9730. doi:10.1039/c3ra46495dMuratsugu, S., Weng, Z., Nakai, H., Isobe, K., Kushida, Y., Sasaki, T., & Tada, M. (2012). Surface-assisted transfer hydrogenation catalysis on a Îł-Al2O3-supported Ir dimer. Physical Chemistry Chemical Physics, 14(46), 16023. doi:10.1039/c2cp43106hPupovac, K., & Palkovits, R. (2013). Cu/MgAl2O4as Bifunctional Catalyst for Aldol Condensation of 5-Hydroxymethylfurfural and Selective Transfer Hydrogenation. ChemSusChem, 6(11), 2103-2110. doi:10.1002/cssc.201300414Shimura, K., & Shimizu, K. (2012). Transfer hydrogenation of ketones by ceria-supported Ni catalysts. Green Chemistry, 14(11), 2983. doi:10.1039/c2gc35836kTang, X., Hu, L., Sun, Y., Zhao, G., Hao, W., & Lin, L. (2013). Conversion of biomass-derived ethyl levulinate into Îł-valerolactone via hydrogen transfer from supercritical ethanol over a ZrO2 catalyst. RSC Advances, 3(26), 10277. doi:10.1039/c3ra41288aDas, S., Heasman, P., Ben, T., & Qiu, S. (2016). Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chemical Reviews, 117(3), 1515-1563. doi:10.1021/acs.chemrev.6b00439Zhang, D.-S., Chang, Z., Lv, Y.-B., Hu, T.-L., & Bu, X.-H. (2012). Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC Adv., 2(2), 408-410. doi:10.1039/c1ra00571eKuhn, P., Antonietti, M., & Thomas, A. (2008). Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition, 47(18), 3450-3453. doi:10.1002/anie.200705710Palkovits, R., Antonietti, M., Kuhn, P., Thomas, A., & SchĂŒth, F. (2009). Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol. Angewandte Chemie International Edition, 48(37), 6909-6912. doi:10.1002/anie.200902009Bavykina, A. V., Goesten, M. G., Kapteijn, F., Makkee, M., & Gascon, J. (2015). Efficient production of hydrogen from formic acid using a Covalent Triazine Framework supported molecular catalyst. ChemSusChem, 8(5), 809-812. doi:10.1002/cssc.201403173Bavykina, A. V., Rozhko, E., Goesten, M. G., Wezendonk, T., Seoane, B., Kapteijn, F., 
 Gascon, J. (2016). Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid. ChemCatChem, 8(13), 2217-2221. doi:10.1002/cctc.201600419Gunniya Hariyanandam, G., Hyun, D., Natarajan, P., Jung, K.-D., & Yoon, S. (2016). An effective heterogeneous Ir(III) catalyst, immobilized on a heptazine-based organic framework, for the hydrogenation of CO2 to formate. Catalysis Today, 265, 52-55. doi:10.1016/j.cattod.2015.10.037Hausoul, P. J. C., Broicher, C., Vegliante, R., Göb, C., & Palkovits, R. (2016). Solid Molecular Phosphine Catalysts for Formic Acid Decomposition in the Biorefinery. Angewandte Chemie International Edition, 55(18), 5597-5601. doi:10.1002/anie.201510681Park, K., Gunasekar, G. H., Prakash, N., Jung, K.-D., & Yoon, S. (2015). A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. ChemSusChem, 8(20), 3410-3413. doi:10.1002/cssc.201500436Pilaski, M., Artz, J., Islam, H.-U., Beale, A. M., & Palkovits, R. (2016). N-containing covalent organic frameworks as supports for rhodium as transition-metal catalysts in hydroformylation reactions. Microporous and Mesoporous Materials, 227, 219-227. doi:10.1016/j.micromeso.2016.03.010Rozhko, E., Bavykina, A., Osadchii, D., Makkee, M., & Gascon, J. (2017). Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. Journal of Catalysis, 345, 270-280. doi:10.1016/j.jcat.2016.11.030Wang, W.-H., Ertem, M. Z., Xu, S., Onishi, N., Manaka, Y., Suna, Y., 
 Himeda, Y. (2015). Highly Robust Hydrogen Generation by Bioinspired Ir Complexes for Dehydrogenation of Formic Acid in Water: Experimental and Theoretical Mechanistic Investigations at Different pH. ACS Catalysis, 5(9), 5496-5504. doi:10.1021/acscatal.5b01090Goesten, M. G., Magusin, P. C. M. M., Pidko, E. A., Mezari, B., Hensen, E. J. M., Kapteijn, F., & Gascon, J. (2014). Molecular Promoting of Aluminum Metal–Organic Framework Topology MIL-101 by N,N-Dimethylformamide. Inorganic Chemistry, 53(2), 882-887. doi:10.1021/ic402198aAngersbach-Bludau, F., Schulz, C., Schöffel, J., & Burger, P. (2014). Syntheses and electronic structures of ÎŒ-nitrido bridged pyridine, diimine iridium complexes. Chem. Commun., 50(63), 8735-8738. doi:10.1039/c4cc03624gAhlsten, N., Bartoszewicz, A., & MartĂ­n-Matute, B. (2012). Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes. Dalton Transactions, 41(6), 1660. doi:10.1039/c1dt11678aYamaguchi, K., Koike, T., Kotani, M., Matsushita, M., Shinachi, S., & Mizuno, N. (2005). Synthetic Scope and Mechanistic Studies of Ru(OH)x/Al2O3-Catalyzed Heterogeneous Hydrogen-Transfer Reactions. Chemistry - A European Journal, 11(22), 6574-6582. doi:10.1002/chem.200500539Sahoo, S., Lundberg, H., EdĂ©n, M., Ahlsten, N., Wan, W., Zou, X., & MartĂ­n-Matute, B. (2012). Single Site Supported Cationic Rhodium(I) Complexes for the Selective Redox Isomerization of Allylic Alcohols. ChemCatChem, 4(2), 243-250. doi:10.1002/cctc.201100321Carson, F., MartĂ­nez-Castro, E., Marcos, R., Miera, G. G., Jansson, K., Zou, X., & MartĂ­n-Matute, B. (2015). Effect of the functionalisation route on a Zr-MOF with an Ir–NHC complex for catalysis. Chemical Communications, 51(54), 10864-10867. doi:10.1039/c5cc03934gVan der Drift, R. C., Bouwman, E., & Drent, E. (2002). Homogeneously catalysed isomerisation of allylic alcohols to carbonyl compounds. Journal of Organometallic Chemistry, 650(1-2), 1-24. doi:10.1016/s0022-328x(02)01150-6Uma, R., CrĂ©visy, C., & GrĂ©e, R. (2003). Transposition of Allylic Alcohols into Carbonyl Compounds Mediated by Transition Metal Complexes. Chemical Reviews, 103(1), 27-52. doi:10.1021/cr0103165Sasson, Y., Zoran, A., & Blum, J. (1981). Reversible ion-pair extraction in a biphasic system. application in transition metal-catalyzed isomerization of allylic compounds. Journal of Molecular Catalysis, 11(2-3), 293-300. doi:10.1016/0304-5102(81)87017-

    Differentially Substituted Acyclic Diaminocarbene Ligands Display Conformation-Dependent Donicities

    No full text
    Complexes of the type [(L)Ir(COD)Cl] and [(L)Ir(CO)(2)Cl] (L = N,N&apos;-dimesityl-N,N&apos;-dimethylformamidin-2-ylidene (3) and N,N&apos;-bis(2,6-di-isopropylphenyl)-N,N&apos;-dimethylformamidin-2-ylidene (4); COD = cis,cis-1,5-cyclooctadiene) were synthesized and studied in solution as well as in the solid state. While the acyclic diaminocarbene (ADC) ligand in [(3)Ir(COD)Cl] adopted a conformation in which the N-aryl substituents were anti with respect to the coordinated metal, the respective Ir carbonyl complex was prepared as separable isomers ([(anti-3)Ir(CO)(2)Cl] and [(amphi-3)Ir(CO)(2)Cl]). The ADC ligands in [(4)Ir(COD)Cl] and [(4)Ir(CO)(2)Cl] adopted exclusively amphi conformations, where one N-aryl substituent was oriented toward the coordinated metal and the other was oriented away. The Tolman electronic parameter (TEP) for anti-3 (2047.8 cm(-1)) was derived from the carbonyl stretching energy (v(CO)) of the aforementioned Ir(CO)(2)Cl complex and was found to be larger than the TEPs calculated for amphi-3 (2044.4 cm(-1)) and 4(2044.0 cm(-1)). Likewise, the oxidation potential of [(anti-3)Ir(CO)(2)Cl], as measured by cyclic voltammetry, was found to be significantly higher (1.57 V) than the analogous oxidation potentials measured for [(amphi-3)Ir(CO)(2)Cl] (1.26 V) and [(4)Ir(CO)(2)Cl] (1.24 V)
    corecore