9 research outputs found

    MACRO DEFECT FREE MATERIALS; THE CHALLENGE OF MECHANOCHEMICAL ACTIVATION

    Get PDF
    Macro-defect-free (MDF) materials belong, according to Odler’s categorisation, to the type of materials where polymers may be successfully combined with cements and water to produce also the parameters of technological novelty and interests. A challenge, which has not been followed or indicated by now, is the option to intensify mixing of dry cement and polymer. The mechanochemical pre-reactions of dry MDF raw mixes consisting of Portland cement and polyphosphate, together with the model of atomic-level interpretations of the formed functional interfaces are proposed, experimentally tested and discussed in the present paper. The results ultimately show the activation of studied system due to the mechanochemical treatment, which consists in the initiation and measurable formation of Al(Fe)–O–P cross-links already in the treated raw mixes. The mechanochemical activation of raw mixes in the high energy planetary mill for the duration of 5 minutes is proposed as the specific mixing and activation / pre-reaction step within the entire MDF synthesis procedure

    Hallmarks of mechanochemistry: From nanoparticles to technology

    Get PDF
    The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).Slovak Grant Agency VEGA 2/0009/11, 2/0043/11Slovak Agency for Science and Development APVV VV-0189-10, VV-0528-11Russian Foundation for Basic Research 10-03-00942a, 12-03-00651aMinistry of Science and Higher education in Poland CUT/c-1/DS/KWC/2008-2012, PB1T09B02330, NN209145136, NN20914893

    NMR study on reaction processes from aluminum chloride hydroxides to alpha alumina powders

    Get PDF
    Starting from gelatinous aluminum chloride hydroxide, the transformation process toward α‐Al2O3 was examined using 27Al NMR, both in the liquid and solid states, as a main analytical tool. By increasing the hydrolysis ratio (h, defined as [OH−]/[Al3+]) of the starting aqueous precursor up to h = 2.5, the transition temperature to the final product, α‐Al2O3, decreased to as low as 500°C. In this case, the structural change from amorphous alumina to α‐Al2O3 took place without intermediate transition Al2O3 phases. Examining the process of networking during the transition from aqueous sol–through the state of xerogel–to final anhydrous oxide by nuclear magnetic resonance (NMR) revealed the presence of highly polymeric species mainly ascribed to δ‐[Al2O8Al28(OH)56(H2O)24]18+ (δ‐Al30). δ‐Al30 species were found in the solution phase and became predominant after drying. We conclude that the lower temperature synthesis of α‐Al2O3 became possible due to preformation of polymerized AlO6 construction units in the precursor, reducing the energy barrier for the nucleation of the final α‐Al2O3 phase

    Hallmarks of mechanochemistry: From nanoparticles to technology

    Get PDF
    The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references). © 2013 The Royal Society of Chemistry.Peer Reviewe

    Hallmarks of mechanochemistry: from nanoparticles to technology

    Get PDF
    Équipe 401 : Nanomatériaux pour la vie et développement durableInternational audienceThe aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references)

    Hallmarks of mechanochemistry: from nanoparticles to technology

    No full text
    corecore