126 research outputs found

    Editorial: Managing physiological and biomechanical load-adaptation pathways in high performance sport: Challenges and opportunities

    Get PDF
    High performance sport is continuing to push the barriers of elite athletes' physiological and biomechanical adaptation in an effort to gain an edge in highly competitive sporting environments, where the winning margins can be extremely thin. Methods for individualizing and optimizing the load-adaptation relationship to different training interventions have long been sought (1, 2), and continue to this day (3, 4). But while physiological adaptations to training have been well-studied, differentiating between physiological and biomechanical load-adaptation pathways is vital for understanding how best to optimize individualized training programs (5). Also of significant interest is the use of ergogenic aids such as dietary supplements (6), environmental manipulation (7), or sophisticated footwear designs (8) on physiological and biomechanical training adaptations, respectively. In addition to understanding load-adaptation pathways, and of equal importance, is determining rigorous methodology for assessing training load, so that the load-adaptation relationship can be better quantified (9, 10). However, despite the growing interest in training and ergogenic intervention research, there remains much to be learnt about assessing and managing the load-adaptation pathway within elite athlete populations

    The Respiratory System during Intermittent-Sprint Work: Respiratory Muscle Work and the Critical Distribution of Oxygen

    Get PDF
    In healthy individuals at rest and while performing moderate-intensity exercise, systemic blood flow is distributed to tissues relative to their metabolic oxygen demands. During sustained high-intensity exercise, competition for oxygen delivery arises between locomotor and respiratory muscles, and the heightened metabolic work of breathing, therefore, contributes to limited skeletal muscle oxygenation and contractility. Intriguingly, this does not appear to be the case for intermittent-sprint work. This chapter presents new evidence, based on inspiratory muscle mechanical loading and hypoxic gas breathing, to support that the respiratory system of healthy men is capable of accommodating the oxygen needs of both locomotor and respiratory muscles when work is interspersed with short recovery periods. Only when moderate hypoxemia is induced, substantial oxygen competition arises in favour of the respiratory muscles. These findings extend our understanding of the relationship between mechanical and metabolic limits of varied exercise modes

    Exercise-related sensations contribute to decrease power during repeated cycle sprints with limited influence on neural drive

    Get PDF
    Purposes: We manipulated the inspired oxygen fraction (FiO2) to examine the effects of physiological perturbations on exercise-related sensations and the neural drive of the quadriceps during repeated, brief, maximal cycle sprints. Methods: Nine active males completed a repeated sprint cycle protocol (10 × 4-s maximal sprints with 30 s of passive recovery) in normoxia (NM; FiO2 0.21) and severe normobaric hypoxia (HY; FiO2 0.13). Peak power, quadriceps Root Mean Squared electromyography (RMS EMG), physiological (heart rate, arterial oxygen saturation, blood lactate concentration) and perceptual responses were recorded. Results: The 10 sprints in HY were associated with lower arterial oxygen saturation values compared to NM (80.7 ± 0.9 vs. 95.6 ± 0.6%; P0.47). Mean power for sprints 1-10 were lower (-13 ± 3%; P=0.001; ES=0.79), and sprint decrement was more pronounced in HY compared to NM (21.4 ± 3.7 vs. 13.2 ± 2.7%; P=0.003). There was a 17% decrease in RMS EMG activity from the first to the last sprint (P<0.001; ES=0.65), independent of condition (P=0.597; ES=0.04). Conclusions: Despite severe hypoxia exacerbating both physiological and perceptual perturbations, the performance decrement observed during the repeated sprint protocol did not coincide with an accentuated decline in RMS EMG activity. These data suggest that higher-than-normal exercise-related sensations or perceptions coincide with fatigue during repeated sprinting, independent of changes in neural drive, when the task characteristics are known beforehand

    Heavy resistance training in hypoxia enhances 1RM squat performance

    Get PDF
    Purpose: To determine if heavy resistance training in hypoxia (IHRT) is more effective at improving strength, power, and increasing lean mass than the same training in normoxia. Methods: A pair-matched, placebo-controlled study design included 20 resistance-trained participants assigned to IHRT (FIO2 0.143) or placebo (FIO2 0.20), (n = 10 per group). Participants were matched for strength and training. Both groups performed 20 sessions over 7 weeks either with IHRT or placebo. All participants were tested for 1RM, 20-m sprint, body composition, and countermovement jump pre-, mid-, and post-training and compared via magnitude-based inferences. Presentation of Results: Groups were not clearly different for any test at baseline. Training improved both absolute (IHRT: 13.1 ± 3.9%, effect size (ES) 0.60, placebo 9.8 ± 4.7%, ES 0.31) and relative 1RM (IHRT: 13.4 ± 5.1%, ES 0.76, placebo 9.7 ± 5.3%, ES 0.48) at mid. Similarly, at post both groups increased absolute (IHRT: 20.7 ± 7.6%, ES 0.74, placebo 14.1 ± 6.0%, ES 0.58) and relative 1RM (IHRT: 21.6 ± 8.5%, ES 1.08, placebo 13.2 ± 6.4%, ES 0.78). Importantly, the change in IHRT was greater than placebo at mid for both absolute [4.4% greater change, 90% Confidence Interval (CI) 1.0:8.0%, ES 0.21, and relative strength (5.6% greater change, 90% CI 1.0:9.4%, ES 0.31 (relative)]. There was also a greater change for IHRT at post for both absolute (7.0% greater change, 90% CI 1.3:13%, ES 0.33), and relative 1RM (9.2% greater change, 90% CI 1.6:14.9%, ES 0.49). Only IHRT increased countermovement jump peak power at Post (4.9%, ES 0.35), however the difference between IHRT and placebo was unclear (2.7, 90% CI –2.0:7.6%, ES 0.20) with no clear differences in speed or body composition throughout. Conclusion: Heavy resistance training in hypoxia is more effective than placebo for improving absolute and relative strength

    Variations in hypoxia impairs muscle oxygenation and performance during simulated team-sport running

    Get PDF
    Purpose: To quantify the effect of acute hypoxia on muscle oxygenation and power during simulated team-sport running. Methods: Seven individuals performed repeated and single sprint efforts, embedded in a simulated team-sport running protocol, on a non-motorized treadmill in normoxia (sea-level), and acute normobaric hypoxia (simulated altitudes of 2,000 and 3,000 m). Mean and peak power was quantified during all sprints and repeated sprints. Mean total work, heart rate, blood oxygen saturation, and quadriceps muscle deoxyhaemoglobin concentration (assessed via near-infrared spectroscopy) were measured over the entire protocol. A linear mixed model was used to estimate performance and physiological effects across each half of the protocol. Changes were expressed in standardized units for assessment of magnitude. Uncertainty in the changes was expressed as a 90% confidence interval and interpreted via non-clinical magnitude-based inference. Results: Mean total work was reduced at 2,000 m (−10%, 90% confidence limits ±6%) and 3,000 m (−15%, ±5%) compared with sea-level. Mean heart rate was reduced at 3,000 m compared with 2,000 m (−3, ±3 min(−1)) and sea-level (−3, ±3 min(−1)). Blood oxygen saturation was lower at 2,000 m (−8, ±3%) and 3,000 m (−15, ±2%) compared with sea-level. Sprint mean power across the entire protocol was reduced at 3,000 m compared with 2,000 m (−12%, ±3%) and sea-level (−14%, ±4%). In the second half of the protocol, sprint mean power was reduced at 3,000 m compared to 2,000 m (−6%, ±4%). Sprint mean peak power across the entire protocol was lowered at 2,000 m (−10%, ±6%) and 3,000 m (−16%, ±6%) compared with sea-level. During repeated sprints, mean peak power was lower at 2,000 m (−8%, ±7%) and 3,000 m (−8%, ±7%) compared with sea-level. In the second half of the protocol, repeated sprint mean power was reduced at 3,000 m compared to 2,000 m (−7%, ±5%) and sea-level (−9%, ±5%). Quadriceps muscle deoxyhaemoglobin concentration was lowered at 3,000 m compared to 2,000 m (−10, ±12%) and sea-level (−11, ±12%). Conclusions: Simulated team-sport running is impaired at 3,000 m compared to 2,000 m and sea-level, likely due to a higher muscle deoxygenation

    A combination of amino acids and caffeine enhances sprint running capacity in a hot, hypoxic environment

    Get PDF
    Heat and hypoxia exacerbate central nervous system (CNS) fatigue. We therefore investigated whether essential amino acid (EAA) and caffeine ingestion attenuates CNS fatigue in a simulated team sport–specific running protocol in a hot, hypoxic environment. Subelite male team sport athletes (n = 8) performed a repeat sprint running protocol on a nonmotorized treadmill in an extreme environment on 4 separate occasions. Participants ingested one of four supplements: a double placebo, 3 mg.kg⁻¹ body mass of caffeine + placebo, 2 × 7 g EAA (Musashi Create)+placebo, or caffeine + EAA before each exercise session using a randomized, double-blind crossover design. Electromyography (EMG) activity and quadriceps evoked responses to magnetic stimulation were assessed from the dominant leg at preexercise, halftime, and postexercise. Central activation ratio (CAR) was used to quantify completeness of quadriceps activation. Oxygenation of the prefrontal cortex was measured via near-infrared spectroscopy. Mean sprint work was higher (M = 174 J, 95% CI [23, 324], p < .05, d = 0.30; effect size, likely beneficial) in the caffeine + EAA condition versus EAAs alone. The decline in EMG activity was less (M = 13%, 95% CI [0, 26]; p < .01, d = 0.58, likely beneficial) in caffeine + EAA versus EAA alone. Similarly, the pre- to postexercise decrement in CAR was significantly less (M = −2.7%, 95% CI [0.4, 5.4]; p < .05, d = 0.50, likely beneficial) when caffeine + EAA were ingested compared with placebo. Cerebral oxygenation was lower (M = −5.6%, 95% CI [1.0, 10.1]; p < .01, d = 0.60, very likely beneficial) in the caffeine + EAA condition compared with LNAA alone. Coingestion of caffeine and EAA appears to maintain muscle activation and central drive, with a small improvement in running performance.13 page(s

    Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading

    Get PDF
    A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-sprint exercise. Ten healthy males completed three experiment sessions of ten 10-s sprints, separated by 30-s of passive rest on a cycle ergometer. The first two sessions were "all-out' efforts performed without (CTRL) or with inspiratory loading (INSP) in a randomised and counterbalanced order. The third experiment session (MATCH) consisted of ten 10-s work-matched intervals. Tissue saturation index (TSI) and deoxy-haemoglobin (HHb) of the vastus lateralis and sixth intercostal space was monitored with near-infrared spectroscopy. Vastus lateralis reoxygenation (ΔReoxy) was calculated as the difference from peak HHb (sprint) to nadir HHb (recovery). Total mechanical work completed was similar between INSP and CTRL (effect size: -0.18, 90% confidence limit ±0.43), and differences in vastus lateralis TSI during the sprint (-0.01 ±0.33) and recovery (-0.08 ±0.50) phases were unclear. There was also no meaningful difference in ΔReoxy (0.21 ±0.37). Intercostal HHb was higher in the INSP session compared to CTRL (0.42 ±0.34), whilst the difference was unclear for TSI (-0.01 ±0.33). During MATCH exercise, differences in vastus lateralis TSI were unclear compared to INSP for both sprint (0.10 ±0.30) and recovery (-0.09 ±0.48) phases, and there was no meaningful difference in ΔReoxy (-0.25 ±0.55). Intercostal TSI was higher during MATCH compared to INSP (0.95 ±0.53), whereas HHb was lower (-1.09 ±0.33). The lack of difference in ΔReoxy between INSP and CTRL suggests that for intermittent sprint exercise, the metabolic O2 demands of both the respiratory and locomotor muscles can be met. Additionally, the similarity of the MATCH suggests that ΔReoxy was maximal in all exercise conditions

    Effect of Acute Exposure to Moderate Altitude on Muscle Power: Hypobaric Hypoxia vs. Normobaric Hypoxia

    Get PDF
    When ascending to a higher altitude, changes in air density and oxygen levels affect the way in which explosive actions are executed. This study was designed to compare the effects of acute exposure to real or simulated moderate hypoxia on the dynamics of the force-velocity relationship observed in bench press exercise. Twenty-eight combat sports athletes were assigned to two groups and assessed on two separate occasions: G1 (n = 17) in conditions of normoxia (N1) and hypobaric hypoxia (HH) and G2 (n = 11) in conditions of normoxia (N2) and normobaric hypoxia (NH). Individual and complete force-velocity relationships in bench press were determined on each assessment day. For each exercise repetition, we obtained the mean and peak velocity and power shown by the athletes. Maximum power (Pmax) was recorded as the highest Pmean obtained across the complete force-velocity curve. Our findings indicate a significantly higher absolute load linked to Pmax (~3%) and maximal strength (1RM) (~6%) in G1 attributable to the climb to altitude (P<0.05). We also observed a stimulating effect of natural hypoxia on Pmean and Ppeak in the middle-high part of the curve (≥60 kg; P<0.01) and a 7.8% mean increase in barbell displacement velocity (P<0.001). No changes in any of the variables examined were observed in G2. According to these data, we can state that acute exposure to natural moderate altitude as opposed to simulated normobaric hypoxia leads to gains in 1RM, movement velocity and power during the execution of a force-velocity curve in bench press.This study has been supported by a Grant from the Ministry of education, culture and Sport of Spain, Reference 14/UPB10/07

    Muscle Oxygen Changes following Sprint Interval Cycling Training in Elite Field Hockey Players

    Get PDF
    This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34±0.14 to 5.50±0.14m.s-1) but not the CON group (pre = 5.37± 0.27 to 5.39±0.30m.s-1) significant changes were seen in the 30-15IFTperformance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (-7.59±0.91 to -12.16±2.70%); ΔHHb+HMb (35.68±6.67 to 69.44 ±26.48μM.cm); and ΔHbO2+ MbO2 (-74.29±13.82 to -109.36±22.61μM.cm). No significant differences were seen in ΔtHb (-45.81±15.23 to -42.93±16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes

    A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia

    Get PDF
    We report a genome-wide association scan in >6,000 Latin Americans for pigmentation of skin and eyes. We found eighteen signals of association at twelve genomic regions. These include one novel locus for skin pigmentation (in 10q26) and three novel loci for eye pigmentation (in 1q32, 20q13 and 22q12). We demonstrate the presence of multiple independent signals of association in the 11q14 and 15q13 regions (comprising the GRM5/TYR and HERC2/OCA2 genes, respectively) and several epistatic interactions among independently associated alleles. Strongest association with skin pigmentation at 19p13 was observed for an Y182H missense variant (common only in East Asians and Native Americans) in MFSD12, a gene recently associated with skin pigmentation in Africans. We show that the frequency of the derived allele at Y182H is significantly correlated with lower solar radiation intensity in East Asia and infer that MFSD12 was under selection in East Asians, probably after their split from Europeans
    corecore