30 research outputs found

    AT 2018cow VLBI: No Long-Lived Relativistic Outflow

    Get PDF
    Abstract We report on VLBI observations of the fast and blue optical transient (FBOT), AT 2018cow. At ∌62 Mpc, AT 2018cow is the first relatively nearby FBOT. The nature of AT 2018cow is not clear, although various hypotheses from a tidal disruption event to different kinds of supernovae have been suggested. It had a very fast rise time (3.5 d) and an almost featureless blue spectrum although high photospheric velocities (40,000 km s−1) were suggested early on. The X-ray luminosity was very high, ∌1.4 × 1043 erg s−1, larger than those of ordinary SNe, and more consistent with those of SNe associated with gamma-ray bursts. Variable hard X-ray emission hints at a long-lived “central engine.” It was also fairly radio luminous, with a peak 8.4-GHz spectral luminosity of ∌4 × 1028 erg s−1 Hz−1, allowing us to make VLBI observations at ages between 22 and 287 d. We do not resolve AT 2018cow. Assuming a circularly symmetric source, our observations constrain the average apparent expansion velocity to be <0.49 c by t = 98 d (3σ limit). We also constrain the proper motion of AT 2018cow to be <0.51 c. Since the radio emission generally traces the fastest ejecta, our observations make the presence of a long-lived relativistic jet with a lifetime of more than one month very unlikely

    Radio source calibration for the VSA and other CMB instruments at around 30 GHz

    Get PDF
    Accurate calibration of data is essential for the current generation of CMB experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 percent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 percent precision. The sources for which a 1 percent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ~30 GHz is given for each. Cas A,Tau A, NGC7027 and Venus were examined for variability. Cas A was found to be decreasing at 0.394±0.0190.394 \pm 0.019 percent per year over the period March 2001 to August 2004. In the same period Tau A was decreasing at 0.22±0.070.22\pm 0.07 percent per year. A survey of the published data showed that the planetary nebula NGC7027 decreased at 0.16±0.040.16\pm 0.04 percent per year over the period 1967 to 2003. Venus showed an insignificant (1.5±1.31.5 \pm 1.3 percent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be 7.8±0.67.8\pm 0.6 percent at pa =148∘±3∘ = 148^\circ \pm 3^\circ.}Comment: 13 pages, 15 figures, submitted to MNRA

    High sensitivity measurements of the CMB power spectrum with the extended Very Small Array

    Full text link
    We present deep Ka-band (Μ≈33\nu \approx 33 GHz) observations of the CMB made with the extended Very Small Array (VSA). This configuration produces a naturally weighted synthesized FWHM beamwidth of ∌11\sim 11 arcmin which covers an ℓ\ell-range of 300 to 1500. On these scales, foreground extragalactic sources can be a major source of contamination to the CMB anisotropy. This problem has been alleviated by identifying sources at 15 GHz with the Ryle Telescope and then monitoring these sources at 33 GHz using a single baseline interferometer co-located with the VSA. Sources with flux densities \gtsim 20 mJy at 33 GHz are subtracted from the data. In addition, we calculate a statistical correction for the small residual contribution from weaker sources that are below the detection limit of the survey. The CMB power spectrum corrected for Galactic foregrounds and extragalactic point sources is presented. A total ℓ\ell-range of 150-1500 is achieved by combining the complete extended array data with earlier VSA data in a compact configuration. Our resolution of Δℓ≈60\Delta \ell \approx 60 allows the first 3 acoustic peaks to be clearly delineated. The is achieved by using mosaiced observations in 7 regions covering a total area of 82 sq. degrees. There is good agreement with WMAP data up to ℓ=700\ell=700 where WMAP data run out of resolution. For higher ℓ\ell-values out to ℓ=1500\ell = 1500, the agreement in power spectrum amplitudes with other experiments is also very good despite differences in frequency and observing technique.Comment: 16 pages. Accepted in MNRAS (minor revisions

    Seven years of coordinated Chandra–NuSTAR observations of SN 2014C unfold the extreme mass-loss history of its stellar progenitor

    Get PDF
    We present the results from our 7 yr long broadband X-ray observing campaign of SN 2014C with Chandra and NuSTAR. These coordinated observations represent the first look at the evolution of a young extragalactic SN in the 0.3–80 keV energy range in the years after core collapse. We find that the spectroscopic metamorphosis of SN 2014C from an ordinary type Ib SN into an interacting SN with copious hydrogen emission is accompanied by luminous X-rays reaching L x ≈ 5.6 × 1040 erg s−1 (0.3–100 keV) at ∌1000 days post-explosion and declining as L x ∝ t −1 afterwards. The broadband X-ray spectrum is of thermal origin and shows clear evidence for cooling after peak, with T(t)≈20keV(t/tpk)−0.5 . Soft X-rays of sub-keV energy suffer from large photoelectric absorption originating from the local SN environment with NHint(t)≈3×1022(t/400days)−1.4cm−2 . We interpret these findings as the result of the interaction of the SN shock with a dense (n ≈ 105 − 106 cm−3), H-rich disk-like circumstellar medium (CSM) with inner radius ∌2 × 1016 cm and extending to ∌1017 cm. Based on the declining NHint(t) and X-ray luminosity evolution, we infer a CSM mass of ∌(1.2 f–2.0 f)M⊙ , where f is the volume filling factor. We place SN 2014C in the context of 121 core-collapse SNe with evidence for strong shock interaction with a thick circumstellar medium. Finally, we highlight the challenges that the current mass-loss theories (including wave-driven mass loss, binary interaction, and line-driven winds) face when interpreting the wide dynamic ranges of CSM parameters inferred from observations

    Radio analysis of SN2004C reveals an unusual CSM density profile as a harbinger of core collapse

    Get PDF
    We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∌40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion's forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∌0.06 c that carries an energy of ≈1049 erg. Our modeling further reveals a flat CSM density profile ρCSM ∝ R−0.03±0.22 up to a break radius Rbr ≈ (1.96 ± 0.10) × 1016 cm, with a steep density gradient following ρCSM ∝ R−2.3±0.5 at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∌0.021 M☉, and that the progenitor's effective mass-loss rate varied with time over the range (50–500) × 10−5 M☉ yr−1 for an adopted wind velocity vw = 1000 km s−1 and shock microphysical parameters epsilone = 0.1, epsilonB = 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass loss powered by gravity waves and/or interaction with a binary companion

    A MISSING-LINK IN THE SUPERNOVA-GRB CONNECTION: THE CASE OF SN 2012ap

    Get PDF
    Gamma Ray Bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However supernovae, with heavy ejecta, can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. Yet the ejecta from SN 2009bb was baryon loaded, and in nearly-free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB, but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than a sixth of the fluence from GRB 980425. This shows for the first time that central engines in type Ic supernovae, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.Comment: 8 pages, 5 figures, 1 table, accepted for publication in Ap
    corecore