35 research outputs found

    Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Get PDF
    Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms) isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni

    Perceptual quality of BRDF approximations: dataset and metrics

    Get PDF
    International audienceBidirectional Reflectance Distribution Functions (BRDFs) are pivotal to the perceived realism in image synthesis. While measured BRDF datasets are available, reflectance functions are most of the time approximated by analytical formulas for storage efficiency reasons. These approximations are often obtained by minimizing metrics such as L 2 —or weighted quadratic—distances, but these metrics do not usually correlate well with perceptual quality when the BRDF is used in a rendering context, which motivates a perceptual study. The contributions of this paper are threefold. First, we perform a large-scale user study to assess the perceptual quality of 2026 BRDF approximations, resulting in 84138 judgments across 1005 unique participants. We explore this dataset and analyze perceptual scores based on material type and illumination. Second, we assess nine analytical BRDF models in their ability to approximate tabulated BRDFs. Third, we assess several image-based and BRDF-based (Lp, optimal transport and kernel distance) metrics in their ability to approximate perceptual similarity judgments

    Gamma Factory at CERN – novel research tools made of light

    Get PDF
    We discuss the possibility of creating novel research tools by producing and storing highly relativistic beams of highly ionised atoms in the CERN accelerator complex, and by exciting their atomic degrees of freedom with lasers to produce high-energy photon beams. Intensity of such photon beams would be by several orders of magnitude higher than offered by the presently operating light sources, in the particularly interesting gamma-ray energy domain of 0.1-400 MeV. In this energy range, the high-intensity photon beams can be used to produce secondary beams of polarised electrons, polarised positrons, polarised muons, neutrinos, neutrons and radioactive ions. New research opportunities in a wide domain of fundamental and applied physics can be opened by the Gamma Factory scientific programme based on the above primary and secondary beams.Comment: 12 pages; presented by W. Placzek at the XXV Cracow Epiphany Conference on Advances in Heavy Ion Physics, 8-11 January 2019, Cracow, Polan

    Hyperfine structure calculations of excited levels in neutral scandium

    No full text
    info:eu-repo/semantics/nonPublishe

    GRASP2018-A Fortran 95 version of the General Relativistic Atomic Structure Package

    No full text
    The present GRASP2018 is an updated Fortran 95 version of the recommended block versions of programs from GRASP2K Version 1_1 for large-scale calculations Jonsson et al. (2013). MPI programs are included so that all major tasks can be executed using parallel computers. Tools have been added that simplify the generation of configuration state function expansions for the multireference single- and double computational model. Names of programs have been changed to accurately reflect the task performed by the code. Modifications to the relativistic self-consistent field program have been made that, in some instances, greatly reduce the number of iterations needed for determining the requested eigenvalues and the memory required. Changes have been made to the relativistic configuration interaction program to substantially cut down on the time for constructing the Hamiltonian matrix for configuration state function expansions based on large ,orbital sets. In the case of a finite nucleus the grid points have been changed so that the first non-zero point is Z-dependent as for the point nucleus. A number of tools have been developed to generate LaTeX tables of eigenvalue composition, energies, transition data and lifetimes. Tools for plotting and analyzing computed properties along an iso-electronic sequence have also been added. A number of minor errors have been corrected. A detailed manual is included that describes different aspects of the package as well as the steps needed in order to produce reliable results. Program summary Program Title: GRAsp2018 Program Files doi: http://dx.doi.org/10.17632/x574wpp2vg.1 Licensing provisions: MIT license Programming language: Fortran 95. Nature of problem: Prediction of atomic properties - atomic energy levels, isotope shifts, oscillator strengths, radiative decay rates, hyperfine structure parameters, specific mass shift parameters, Zeeman effects - using a multiconfiguration Dirac-Hartree-Fock approach. Solution method: The computational method is the same as in the previous GRASP2K [1,2] version except that only the latest recommended versions of certain routines are included. Restrictions: All calculations are for bound state solutions. Instead of relying on packing algorithms for specifying arguments of arrays of integrals, orbitals are designated by a "short integer" requiring one byte of memory for a maximum of 127 orbitals. The tables of reduced coefficients of fractional parentage used in this version are limited to sub-shells with j 9/2 are, therefore, restricted to a maximum of two electrons. Some other parameters, such as the maximum number of orbitals are determined in a parameter_def _M.f 90 file that can be modified prior to compile time. Unusual features: Parallel versions are available for several applications. References [1] P. Jonsson, X. He, C. Froese Fischer, and I. P. Grant, Comput. Phys. Commun. 176, 597 (2007). [2] P. Jonsson, G. Gaigalas, J. Bieron, C. Froese Fischer, and I. P. Grant, Comput. Phys. Commun. 184, 2197 (2013). [3] G. Gaigalas, S. Fritzsche, Z. Rudzikas, Atomic Data and Nuclear Data Tables 76, 235 (2000). (C) 2018 Elsevier B.V. All rights reserved
    corecore